ﻻ يوجد ملخص باللغة العربية
The recent Advanced LIGO and Advanced Virgo joint observing runs have not claimed a stochastic gravitational-wave background detection, but one expects this to change as the sensitivity of the detectors improves. The challenge of claiming a true detection will be immediately succeeded by the difficulty of relating the signal to the sources that contribute to it. In this paper, we consider backgrounds that comprise compact binary coalescences and additional cosmological sources, and we set simultaneous upper limits on these backgrounds. We find that the Advanced LIGO, Advanced Virgo network, operating at design sensitivity, will not allow for separation of the sources we consider. Third generation detectors, sensitive to most individual compact binary mergers, can reduce the astrophysical signal via subtraction of individual sources, and potentially reveal a cosmological background. Our Bayesian analysis shows that, assuming a detector network containing Cosmic Explorer and Einstein Telescope and reasonable levels of individual source subtraction, we can detect cosmological signals $Omega_{rm{CS}} (25,rm{Hz})=4.5 times 10^{-13}$ for cosmic strings, and $Omega_{rm BPL}(25,rm{Hz})= 2.2 times 10^{-13}$ for a broken power law model of an early universe phase transition.
In its observation band, the Laser Interferometer Space Antenna (LISA) will simultaneously observe stochastic gravitational-wave background (SGWB) signals of different origins; orbitally modulated waveforms from galactic white dwarf binaries, a binar
The stochastic cosmological gravitational-wave background (CGWB) provides a direct window to study early universe phenomena and fundamental physics. With the proposed third-generation ground-based gravitational wave detectors, Einstein Telescope (ET)
With the goal of attempting to observe a stochastic gravitational wave background (SGWB) with LISA, the spectral separability of the cosmological and astrophysical backgrounds is important to estimate. We attempt to determine the level with which a c
We make forecasts for the impact a future midband space-based gravitational wave experiment, most sensitive to $10^{-2}- 10$ Hz, could have on potential detections of cosmological stochastic gravitational wave backgrounds (SGWBs). Specific proposed m
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m