ترغب بنشر مسار تعليمي؟ اضغط هنا

Expressibility of norms in temporal logic

241   0   0.0 ( 0 )
 نشر من قبل Natasha Alechina
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this short note we address the issue of expressing norms (such as obligations and prohibitions) in temporal logic. In particular, we address the argument from [Governatori 2015] that norms cannot be expressed in Linear Time Temporal Logic (LTL).



قيم البحث

اقرأ أيضاً

In this note we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of TEL that shares the syntax of first-order Linear-time Temporal Logic (LTL) but has a different semantics, selecting some LTL models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close to usual logic programs but allowing a restricted use of temporal operators. In this setting, we provide a syntactic definition of safe variables that suffices to show the property of domain independence -- that is, addition of arbitrary elements in the universe does not vary the set of temporal stable models. Finally, we present a method for computing the derivable facts by constructing a non-temporal logic program with variables that is fed to a standard ASP grounder. The information provided by the grounder is then used to generate a subset of ground temporal rules which is equivalent to (and generally smaller than) the full program instantiation.
Temporal logic inference is the process of extracting formal descriptions of system behaviors from data in the form of temporal logic formulas. The existing temporal logic inference methods mostly neglect uncertainties in the data, which results in l imited applicability of such methods in real-world deployments. In this paper, we first investigate the uncertainties associated with trajectories of a system and represent such uncertainties in the form of interval trajectories. We then propose two uncertainty-aware signal temporal logic (STL) inference approaches to classify the undesired behaviors and desired behaviors of a system. Instead of classifying finitely many trajectories, we classify infinitely many trajectories within the interval trajectories. In the first approach, we incorporate robust semantics of STL formulas with respect to an interval trajectory to quantify the margin at which an STL formula is satisfied or violated by the interval trajectory. The second approach relies on the first learning algorithm and exploits the decision tree to infer STL formulas to classify behaviors of a given system. The proposed approaches also work for non-separable data by optimizing the worst-case robustness in inferring an STL formula. Finally, we evaluate the performance of the proposed algorithms in two case studies, where the proposed algorithms show reductions in the computation time by up to four orders of magnitude in comparison with the sampling-based baseline algorithms (for a dataset with 800 sampled trajectories in total).
73 - Zhe Xu , Yuxin Chen , Ufuk Topcu 2020
Machine teaching is an algorithmic framework for teaching a target hypothesis via a sequence of examples or demonstrations. We investigate machine teaching for temporal logic formulas -- a novel and expressive hypothesis class amenable to time-relate d task specifications. In the context of teaching temporal logic formulas, an exhaustive search even for a myopic solution takes exponential time (with respect to the time span of the task). We propose an efficient approach for teaching parametric linear temporal logic formulas. Concretely, we derive a necessary condition for the minimal time length of a demonstration to eliminate a set of hypotheses. Utilizing this condition, we propose a myopic teaching algorithm by solving a sequence of integer programming problems. We further show that, under two notions of teaching complexity, the proposed algorithm has near-optimal performance. The results strictly generalize the previous results on teaching preference-based version space learners. We evaluate our algorithm extensively under a variety of learner types (i.e., learners with different preference models) and interactive protocols (e.g., batched and adaptive). The results show that the proposed algorithms can efficiently teach a given target temporal logic formula under various settings, and that there are significant gains of teaching efficacy when the teacher adapts to the learners current hypotheses or uses oracles.
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed in MSO and is closed under homomorphisms, and for all integers l,k, there exists a *canonical* Datalog program Pi of width (l,k), that is, a Datalog program of width (l,k) which is sound for C (i.e., Pi only derives the goal predicate on a finite structure A if A is in C) and with the property that Pi derives the goal predicate whenever *some* Datalog program of width (l,k) which is sound for C derives the goal predicate. The same characterisations also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results, we show that every class C in GSO whose complement is closed under homomorphisms is a finite union of constraint satisfaction problems (CSPs) of countably categorical structures.
Synthesizing a program that realizes a logical specification is a classical problem in computer science. We examine a particular type of program synthesis, where the objective is to synthesize a strategy that reacts to a potentially adversarial envir onment while ensuring that all executions satisfy a Linear Temporal Logic (LTL) specification. Unfortunately, exact methods to solve so-called LTL synthesis via logical inference do not scale. In this work, we cast LTL synthesis as an optimization problem. We employ a neural network to learn a Q-function that is then used to guide search, and to construct programs that are subsequently verified for correctness. Our method is unique in combining search with deep learning to realize LTL synthesis. In our experiments the learned Q-function provides effective guidance for synthesis problems with relatively small specifications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا