ﻻ يوجد ملخص باللغة العربية
We study the Casimir interaction energy due to the vacuum fluctuations of the Electromagnetic (EM) field in the presence of two mirrors, described by $2+1$-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions, and evaluate the interaction energy for several particular situations.
We review new constraints on the Yukawa-type corrections to Newtonian gravity obtained recently from gravitational experiments and from the measurements of the Casimir force. Special attention is paid to the constraints following from the most precis
We study the Casimir effect for scalar fields with general curvature coupling subject to mixed boundary conditions $(1+beta_{m}n^{mu}partial_{mu})phi =0$ at $x=a_{m}$ on one ($m=1$) and two ($m=1,2$) parallel plates at a distance $aequiv a_{2}-a_{1}$
Finite-volume effects for the nucleon chiral partners are studied within the framework of the parity-doublet model. Our model includes the vacuum energy shift for nucleons, which is the Casimir effect. We find that for the antiperiodic boundary the f
In a previous work we formulated a model of semitransparent dielectric surfaces, coupled to the electromagnetic field by means of an effective potential. Here we consider a setup with two dissimilar mirrors, and compute exactly the correction undergo
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity