ﻻ يوجد ملخص باللغة العربية
In a previous work we formulated a model of semitransparent dielectric surfaces, coupled to the electromagnetic field by means of an effective potential. Here we consider a setup with two dissimilar mirrors, and compute exactly the correction undergone by the photon propagator due to the presence of both plates. It turns out that this new propagator is continuous all over the space and, in the appropriate limit, coincides with the one used to describe the Casimir effect between perfect conductors. The amended Green function is then used to calculate the Casimir energy between the uniaxial dielectric surfaces described by the model, and a numerical analysis is carried out to highlight the peculiar behavior of the interaction between the mirrors.
We study the Casimir interaction energy due to the vacuum fluctuations of the Electromagnetic (EM) field in the presence of two mirrors, described by $2+1$-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-b
We calculate exactly the Casimir force between a spherical particle and a plane, both with arbitrary dielectric properties, in the non-retarded limit. Using a Spectral Representation formalism, we show that the Casimir force of a sphere made of a mat
In this lecture we outline the main results of our investigations of certain field-theoretic systems which have V-shaped field potential. After presenting physical examples of such systems, we show that in static problems the exact ground state value
In this paper, we study the electromagnetic Casimir effects in the context of Lorentz symmetry violations. Two distinct approaches are considered: the first one is based on Horava-Lifshitz methodology, which explicitly presents a space-time anisotrop
We are calculated the expectation value of the axial-vector current induced by the vacuum polarization effect of the Dirac field in constant external electromagnetic field. In calculations we use Schwingers proper time method. The effective Lagrangia