ﻻ يوجد ملخص باللغة العربية
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capassos group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be surveyed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder.
It has always been conventionally understood that, in the dilute limit, the Casimir energy of interaction between bodies or the Casimir self-energy of a dielectric body could be identified with the sum of the van der Waals or Casimir-Polder energies
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the sy
Like Casimirs original force between conducting plates in vacuum, Casimir forces are usually attractive. But repulsive Casimir forces can be achieved in special circumstances. These might prove useful in nanotechnology. We give examples of when repul
Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the possibility of technological application. The general subject has a long history, going back to the self-repulsion of a conducting spherical shell
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric