ترغب بنشر مسار تعليمي؟ اضغط هنا

Rogue wave triggered at a critical frequency of a nonlinear resonant medium

120   0   0.0 ( 0 )
 نشر من قبل Jingsong He
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a two-level atomic system, interacting with an electromagnetic field controlled in amplitude and frequency by a high intensity laser. We show that the amplitude of the induced electric field, admits an envelope profile corresponding to a breather soliton. We demonstrate that this soliton can propagate with any frequency shift with respect to that of the control laser, except a critical frequency, at which the system undergoes a structural discontinuity that transforms the breather in a rogue wave. A mechanism of generation of rogue waves by means of an intense laser field is thus revealed.



قيم البحث

اقرأ أيضاً

We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrodinger (NLS) equation with the initial condition in the form of a rectangular barrier (a box). We use th e Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains --- the dispersive dam break flows --- generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.
131 - G. T. Adamashvili 2021
The generalized perturbative reduction method is used to find the two-component vector breather solution of the Born-Infeld equation $ U_{tt} -C U_{zz} = - A U_{t}^{2} U_{zz} - sigma U_{z}^{ 2} U_{tt} + B U_{z} U_{t} U_{zt} $. It is shown that the so lution of the two-component nonlinear wave oscillates with the sum and difference of frequencies and wave numbers.
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o }dinger (NLS) equation. In order to model such gas we use N-soliton solutions (N-SS) with $Nsim 100$, which we generate with specific implementation of the dressing method combined with 100-digits arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the kurtosis, the wave-action spectrum and the probability density function (PDF) of wave intensity. We show that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well described by the analytical relations derived without taking into account soliton interactions. With increasing soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons. Rogue waves emerging in soliton gas are multi-soliton collisions, and yet some of them have spatial profiles very similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution of the second order.
Travelling waves arise in several areas of science, hence modification of travelling wave properties is of great interest. While many studies have demonstrated how to control the form or shape of a solitary travelling wave by employing soliton or dis persion management, far less is known about controlling the motion of a travelling wave while keeping its form unchanged. We present a technique for control of travelling wave motion using time-varying coefficients, which we refer to as wave management. The technique allows one to alter the trajectory of a travelling wave, slowing, stopping, or reversing the direction of the wave, all while ensuring that the wave form is unchanged, and we illustrate this through multiple examples. Our results suggest that wave management is a promising tool for applications where one needs to modify the motion of a wave while preserving its form, and we highlight several potential applications.
In this brief report we study numerically the spontaneous emergence of rogue waves in (i) modulationally unstable plane wave at its long-time statistically stationary state and (ii) bound-state multi-soliton solutions representing the solitonic model of this state [Gelash et al, PRL 123, 234102 (2019)]. Focusing our analysis on the cohort of the largest rogue waves, we find their practically identical dynamical and statistical properties for both systems, that strongly suggests that the main mechanism of rogue wave formation for the modulational instability case is multi-soliton interaction. Additionally, we demonstrate that most of the largest rogue waves are very well approximated -- simultaneously in space and in time -- by the amplitude-scaled rational breather solution of the second order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا