ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-component nonlinear wave of the Born-Infeld equation

132   0   0.0 ( 0 )
 نشر من قبل Guram Adamashvili
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. T. Adamashvili




اسأل ChatGPT حول البحث

The generalized perturbative reduction method is used to find the two-component vector breather solution of the Born-Infeld equation $ U_{tt} -C U_{zz} = - A U_{t}^{2} U_{zz} - sigma U_{z}^{ 2} U_{tt} + B U_{z} U_{t} U_{zt} $. It is shown that the solution of the two-component nonlinear wave oscillates with the sum and difference of frequencies and wave numbers.



قيم البحث

اقرأ أيضاً

206 - G. T. Adamashvili 2021
Using the generalized perturbation reduction method the Hirota equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is obtained. The component s of the pulse oscillate with the sum and difference of the frequencies and the wave numbers. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse are presented.
100 - G. T. Adamashvili 2021
In this work, we employ the generalized perturbation reduction method to find the two-component vector breather solution of the cubic Boussinesq equation $U_{tt} - C U_{zz} - D U_{zzzz}+G (U^{3})_{zz}=0$. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse oscillating with the sum and difference of the frequencies and wave numbers are obtained.
80 - G. T. Adamashvili 2021
The generalized perturbative reduction method is used to find the two-component vector breather solution of the nonlinear Klein-Gordon equation. It is shown that the nonlinear pulse oscillates with the sum and difference of frequencies and wave numbe rs in the region of the carrier wave frequency and wave number. Explicit analytical expressions for the profile and parameters of the nonlinear pulse are obtained. In the particular case, the vector breather coincides with the vector $0pi$ pulse of self-induced transparency.
72 - G. T. Adamashvili 2020
Using the generalized perturbation reduction method the scalar nonlinear Schrodinger equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is o btained. The components of the pulse oscillate with the sum and difference of the frequencies and wave numbers. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse are presented.
We show that the nonlinear stage of modulational instability induced by parametric driving in the {em defocusing} nonlinear Schrodinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong drivi ng regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا