ﻻ يوجد ملخص باللغة العربية
Explicit high-order feature interactions efficiently capture essential structural knowledge about the data of interest and have been used for constructing generative models. We present a supervised discriminative High-Order Parametric Embedding (HOPE) approach to data visualization and compression. Compared to deep embedding models with complicated deep architectures, HOPE generates more effective high-order feature mapping through an embarrassingly simple shallow model. Furthermore, two approaches to generating a small number of exemplars conveying high-order interactions to represent large-scale data sets are proposed. These exemplars in combination with the feature mapping learned by HOPE effectively capture essential data variations. Moreover, through HOPE, these exemplars are employed to increase the computational efficiency of kNN classification for fast information retrieval by thousands of times. For classification in two-dimensional embedding space on MNIST and USPS datasets, our shallow method HOPE with simple Sigmoid transformations significantly outperforms state-of-the-art supervised deep embedding models based on deep neural networks, and even achieved historically low test error rate of 0.65% in two-dimensional space on MNIST, which demonstrates the representational efficiency and power of supervised shallow models with high-order feature interactions.
Automated theorem provers have traditionally relied on manually tuned heuristics to guide how they perform proof search. Deep reinforcement learning has been proposed as a way to obviate the need for such heuristics, however, its deployment in automa
Deep reinforcement learning (DRL) methods such as the Deep Q-Network (DQN) have achieved state-of-the-art results in a variety of challenging, high-dimensional domains. This success is mainly attributed to the power of deep neural networks to learn r
Datasets representing the world around us are becoming ever more unwieldy as data volumes grow. This is largely due to increased measurement and modelling resolution, but the problem is often exacerbated when data are stored at spuriously high precis
People naturally bring their prior beliefs to bear on how they interpret the new information, yet few formal models exist for accounting for the influence of users prior beliefs in interactions with data presentations like visualizations. We demonstr
Nearly all Statistical Parametric Speech Synthesizers today use Mel Cepstral coefficients as the vocal tract parameterization of the speech signal. Mel Cepstral coefficients were never intended to work in a parametric speech synthesis framework, but