ﻻ يوجد ملخص باللغة العربية
Nearly all Statistical Parametric Speech Synthesizers today use Mel Cepstral coefficients as the vocal tract parameterization of the speech signal. Mel Cepstral coefficients were never intended to work in a parametric speech synthesis framework, but as yet, there has been little success in creating a better parameterization that is more suited to synthesis. In this paper, we use deep learning algorithms to investigate a data-driven parameterization technique that is designed for the specific requirements of synthesis. We create an invertible, low-dimensional, noise-robust encoding of the Mel Log Spectrum by training a tapered Stacked Denoising Autoencoder (SDA). This SDA is then unwrapped and used as the initialization for a Multi-Layer Perceptron (MLP). The MLP is fine-tuned by training it to reconstruct the input at the output layer. This MLP is then split down the middle to form encoding and decoding networks. These networks produce a parameterization of the Mel Log Spectrum that is intended to better fulfill the requirements of synthesis. Results are reported for experiments conducted using this resulting parameterization with the ClusterGen speech synthesizer.
A method for statistical parametric speech synthesis incorporating generative adversarial networks (GANs) is proposed. Although powerful deep neural networks (DNNs) techniques can be applied to artificially synthesize speech waveform, the synthetic s
We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional
This paper proposes a novel lip-reading driven deep learning framework for speech enhancement. The proposed approach leverages the complementary strengths of both deep learning and analytical acoustic modelling (filtering based approach) as compared
We present Deep Voice, a production-quality text-to-speech system constructed entirely from deep neural networks. Deep Voice lays the groundwork for truly end-to-end neural speech synthesis. The system comprises five major building blocks: a segmenta
We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained com