ﻻ يوجد ملخص باللغة العربية
We study the evolution of magnetic excitations in the disordered two-dimensional antiferromagnet Sr2Ir1-xRuxO4. A gigantic magnetic gap greater than 40 meV opens at x = 0.27 and increases with Ru concentration, rendering the dispersive magnetic excitations in Sr2IrO4 almost momentum independent. Up to a Ru concentration of x = 0.77, both experiments and first-principles calculations show the Ir Jeff = 1/2 state remains intact. The magnetic gap arises from the local interaction anisotropy in the proximity of the Ru disorder. Under the coherent potential approximation, we reproduce the experimental magnetic excitations using the disordered Heisenberg antiferromagnetic model with suppressed next-nearest neighbor ferromagnetic coupling.
Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu2Cl4 D8C4SO2. Contrary to previously conjectured models that relied on bond-alternating nearest neighbor interactions i
We investigate the magnetic properties of the series Sr2Ir1-xRuxO4 with neutron, resonant x-ray and magnetization measurements. The results indicate an evolution and coexistence of magnetic structures via a spin flop transition from ab-plane to c-axi
The low-temperature magnetic excitations of the two-dimensional spin-5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp peaks identified with one-magnon exci
We investigate real-space localization in the few-particle regime of the XXZ spin-$1/2$ chain with a random magnetic field. Our investigation focuses on the time evolution of the spatial variance of non-equilibrium densities, as resulting for a speci
We investigate the spin-1/2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e. with weak and strong triangular units), constructing an improved simplex Resonating Valence Bond (RVB) ansatz by successive applications (up