ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of competing magnetic order in the Jeff=1/2 insulating state of Sr2Ir1-xRuxO4

118   0   0.0 ( 0 )
 نشر من قبل Stuart Calder
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the magnetic properties of the series Sr2Ir1-xRuxO4 with neutron, resonant x-ray and magnetization measurements. The results indicate an evolution and coexistence of magnetic structures via a spin flop transition from ab-plane to c-axis collinear order as the 5d Ir4+ ions are replaced with an increasing concentration of 4d Ru4+ ions. The magnetic structures within the ordered regime of the phase diagram (x<0.3) are reported. Despite the changes in magnetic structure no alteration of the Jeff=1/2 ground state is observed. The behavior of Sr2Ir1-xRuxO4 is consistent with electronic phase separation and diverges from a standard scenario of hole doping. The role of lattice alterations with doping on the magnetic and insulating behavior is considered. The results presented here provide insight into the magnetic insulating states in strong spin-orbit coupled materials and the role perturbations play in altering the behavior.



قيم البحث

اقرأ أيضاً

106 - D. Boyko , J.T. Haraldsen , 2017
We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We sho w that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between superexchange interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.
105 - Shama , R. K. Gopal , 2018
We report detailed magneto-transport measurements on single crystals of the magnetic Weyl semi-metal Co$_{3}$Sn$_{2}$S$_{2}$. Recently a large anomalous Hall effect and chiral anomaly have been observed in this material which have been suggested to b e related to the large Berry curvature between the Weyl points (Liu et al., Nature Physics (2018).). Another effect expected to result from the topological band structure of magnetic Weyl materials is the planar Hall effect (PHE). In this work we report observation of this intrinsic effect in single crystals of Co$_{3}$Sn$_{2}$S$_{2}$. Crucially, the PHE is observed for temperature $T leq 74$~K which is much smaller than the ferromagnetic ordering temperature $T_c = 175$~K@. Together with the large anomalous Hall conductivity, this further demonstrates the Topological character of Co$_3$Sn$_2$S$_2$.
312 - Yue Cao , Xuerong Liu , Wenhu Xu 2016
We study the evolution of magnetic excitations in the disordered two-dimensional antiferromagnet Sr2Ir1-xRuxO4. A gigantic magnetic gap greater than 40 meV opens at x = 0.27 and increases with Ru concentration, rendering the dispersive magnetic excit ations in Sr2IrO4 almost momentum independent. Up to a Ru concentration of x = 0.77, both experiments and first-principles calculations show the Ir Jeff = 1/2 state remains intact. The magnetic gap arises from the local interaction anisotropy in the proximity of the Ru disorder. Under the coherent potential approximation, we reproduce the experimental magnetic excitations using the disordered Heisenberg antiferromagnetic model with suppressed next-nearest neighbor ferromagnetic coupling.
107 - J. Sugiyama , Y. Ikedo , K. Mukai 2006
The nature of the magnetic transition of the half-filled triangular antiferromagnet Ag$_{2}$NiO$_2$ with $T_{rm N}$=56K was studied with positive muon-spin-rotation and relaxation ($mu^+$SR) spectroscopy. Zero field $mu^+$SR measurements indicate the existence of a static internal magnetic field at temperatures below $T_{rm N}$. Two components with slightly different precession frequencies and wide internal-field distributions suggest the formation of an incommensurate antiferromagnetic order below 56 K. This implies that the antifrerromagnetic interaction is predominant in the NiO$_2$ plane in contrast to the case of the related compound NaNiO$_2$. An additional transition was found at $sim$22 K by both $mu^+$SR and susceptibility measurements. It was also clarified that the transition at $sim$260 K observed in the susceptibility of Ag$_{2}$NiO$_{2}$ is induced by a purely structural transition.
In CaIrO3 electronic correlation, spin-orbit coupling, and tetragonal crystal field splitting are predicted to be of comparable strength. However, the nature of its ground state is still object of debate, with contradictory experimental and theoretic al results. We probe the ground state of CaIrO3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic x-ray scattering. We conclude that insulating CaIrO3 is not a jeff = 1/2 iridate and discuss the consequences of our finding to the interpretation of previous experiments. In particular, we clarify how the Mott insulating state in iridates can be readily extended beyond the jeff = 1/2 ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا