ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral investigation of the noise influencing multi-qubit states

46   0   0.0 ( 0 )
 نشر من قبل Deepak Khurana
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterizing and understanding noise affecting quantum states has immense benefits in spectroscopy as well as in realizing quantum devices. Transverse relaxation times under a set of dynamical decoupling (DD) sequences with varying interpulse delays were earlier used for obtaining the noise spectral densities of single-qubit coherences. In this work, using a pair of homonuclear spins and NMR techniques, we experimentally characterize noise in certain decoherence-free subspaces. We also explore the noise of similar states in a heteronuclear spin pair. Further, using a 10-qubit system, we investigate noise profiles of various multiqubit coherences and study the scaling of noise with respect to the coherence order. Finally, using the experimentally obtained noise spectrum of the 10-qubit NOON state, we predict the performance of a Uhrig DD sequence and verify it experimentally.



قيم البحث

اقرأ أيضاً

92 - L. Pereira , L. Zambrano , 2021
We introduce an inductive $n$-qubit pure-state estimation method. This is based on projective measurements on states of $2n+1$ separable bases or $2$ entangled bases plus the computational basis. Thus, the total number of measurement bases scales as $O(n)$ and $O(1)$, respectively. Thereby, the proposed method exhibits a very favorable scaling in the number of qubits when compared to other estimation methods. Monte Carlo numerical experiments show that the method can achieve a high estimation fidelity. For instance, an average fidelity of $0.88$ on the Hilbert space of $10$ qubits is achieved with $21$ separable bases. The use of separable bases makes our estimation method particularly well suited for applications in noisy intermediate-scale quantum computers, where entangling gates are much less accurate than local gates. We experimentally demonstrate the proposed method in one of IBMs quantum processors by estimating 4-qubit Greenberger-Horne-Zeilinger states with a fidelity close to $0.875$ via separable bases. Other $10$-qubit separable and entangled states achieve an estimation fidelity in the order of $0.85$ and $0.7$, respectively.
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.
111 - Shuming Cheng , Lijun Liu 2017
Nonclassical correlations have been found useful in many quantum information processing tasks, and various measures have been proposed to quantify these correlations. In this work, we mainly study one of nonclassical correlations, called measurement- induced nonlocality (MIN). First, we establish a close connection between this nonlocal effect and the Bell nonlocality for two-qubit states. Then, we derive a tight monogamy relation of MIN for any pure three-qubit state and provide an alternative way to obtain similar monogamy relations for other nonclassical correlation measures, including squared negativity, quantum discord, and geometric quantum discord. Finally, we find that the tight monogamy relation of MIN is violated by some mixed three-qubit states, however, a weaker monogamy relation of MIN for mixed states and even multi-qubit states is still obtained.
Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the increase in the number of parties, dimensionality of the Hilbert space, or/and the number of measurements, there are more nontrivial facet inequalities. By considering a specific measurement scenario, we find that for any multipartite qubit state, local polytope can have only one nontrivial facet. Therefore there exist a possibility that only one Bell inequality, and its permutations, would be able to detect the nonlocality of a pure state. The scenario involves two dichotomic measurement settings for two parties and one dichotomic measurement by other parties. This measurement scenario for a multipartite state may be considered as minimal scenario involving multipartite correlations that can detect nonlocality. We present detailed results for three-qubit states.
A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Bro wn et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا