ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Qubit Systems: Highly Entangled States and Entanglement Distribution

188   0   0.0 ( 0 )
 نشر من قبل Antoni Borras
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.



قيم البحث

اقرأ أيضاً

We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.
Entanglement swapping has played an important role in quantum information processing, and become one of the necessary core technologies in the future quantum network. In this paper, we study entanglement swapping for multi-particle pure states and ma ximally entangled states in qudit systems. We generalize the entanglement swapping of two pure states from the case where each quantum system contains two particles to the case of containing any number of particles, and consider the entanglement swapping between any number of systems. We also generalize the entanglement swapping chain of bipartite pure states to the one of multi-particle pure states. In addition, we consider the entanglement swapping chains for maximally entangled states.
Euclidean volume ratios characterizing the typicality of entangled and separable states are investigated for two-qubit and qubit-qutrit quantum states. For this purpose a new numerical approach is developed. It is based on the Peres-Horodecki criteri on, on a characterization of the convex set of quantum states by inequalities resulting from Newton identities and Descartes rule of signs and on combining this characterization with standard and Multiphase Monte Carlo algorithms. Our approach confirms not only recent results on two-qubit states but also allows for a numerically reliable numerical treatment of so far unexplored special classes of two-qubit and qubit-qutrit states. However, our results also hint at the limits of efficiency of our numerical Monte Carlo approaches which is already marked by the most general qubit-qutrit states forming a convex set in a linear manifold of thirtyfive dimensions.
The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a state of the third qubit, which is dubbed entangled entanglement. We show that in this way we obtain all 8 independent GHZ stat es that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a certain geometry that is relevant for experimental and quantum information theoretic applications. Furthermore, we study the geometry of these particular state spaces, the inherent symmetries, the cyclicity of the phase operations, and the regions of (genuine multi-partite) entanglement and the several classes of separability. We find non-trivial geometrical properties and a conceptually clear procedure to compare state spaces of different dimensions and number of particles.
135 - Gokhan Torun , Ali Yildiz 2019
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed on ly into a state within the same class by local operations and classical communications. We provide local quantum operations, consisting of the most general two-outcome measurement operators, for the deterministic transformations of three-qubit pure states in which the initial and the target states are in the same class. We explore these transformations, originally having standard GHZ and standard $W$ states, under the local measurement operations carried out by a single party and $p$ ($p=2,3$) parties (successively). We find a notable result that the standard GHZ state cannot be deterministically transformed to a GHZ-type state in which all its bipartite entanglements are nonzero, i.e., a transformation can be achieved with unit probability when the target state has at least one vanishing bipartite concurrence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا