ﻻ يوجد ملخص باللغة العربية
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.
A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Bro
We report on the coherence of Greenberger-Horne-Zeilinger (GHZ) states comprised of up to 8 qubits in the IBM ibmqx5 16-qubit quantum processor. In particular, we evaluate the coherence of GHZ states with $N=1,ldots,8$ qubits, as a function of a dela
For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the
We make a comparative study of quadrature squeezing, photon-number distribution and Wigner function in a decayed quantum system. Specifically, for a field mode prepared initially in cat states interacting with a zero-temperature environment, we show
We microscopically model the decoherence dynamics of entangled coherent states under the influence of vacuum fluctuation. We derive an exact master equation with time-dependent coefficients reflecting the memory effect of the environment, by using th