ترغب بنشر مسار تعليمي؟ اضغط هنا

Sums of variables at the onset of chaos, replenished

151   0   0.0 ( 0 )
 نشر من قبل Alberto Robledo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a counterpart to our previous study of the stationary distribution formed by sums of positions at the Feigenbaum point via the period-doubling cascade in the logistic map (Eur. Phys. J. B 87 32, (2014)), we determine the family of related distributions for the accompanying cascade of chaotic band-splitting points in the same system. By doing this we rationalize how the interplay of regular and chaotic dynamics gives rise to either multiscale or gaussian limit distributions. As demonstrated before (J. Stat. Mech. P01001 (2010)), sums of trajectory positions associated with the chaotic-band attractors of the logistic map lead only to a gaussian limit distribution, but, as we show here, the features of the stationary multiscale distribution at the Feigenbaum point can be observed in the distributions obtained from finite sums with sufficiently small number of terms. The multiscale features are acquired from the repellor preimage structure that dominates the dynamics toward the chaotic attractors. When the number of chaotic bands increases this hierarchical structure with multiscale and discrete scale-invariant properties develops. Also, we suggest that the occurrence of truncated q-gaussian-shaped distributions for specially prescribed sums are t-Student distributions premonitory of the gaussian limit distribution.

قيم البحث

اقرأ أيضاً

We explain how specific dynamical properties give rise to the limit distribution of sums of deterministic variables at the transition to chaos via the period-doubling route. We study the sums of successive positions generated by an ensemble of initia l conditions uniformly distributed in the entire phase space of a unimodal map as represented by the logistic map. We find that these sums acquire their salient, multiscale, features from the repellor preimage structure that dominates the dynamics toward the attractors along the period-doubling cascade. And we explain how these properties transmit from the sums to their distribution. Specifically, we show how the stationary distribution of sums of positions at the Feigebaum point is built up from those associated with the supercycle attractors forming a hierarchical structure with multifractal and discrete scale invariance properties.
The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly-distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them.
70 - Fulvio Baldovin 2017
After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both ana lytically and numerically, and address then whether aspects of the classic Onsagers picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.
We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. S ystems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz `96 model exhibit the same features in quantitative and qualitative terms. Additionally we propose a minimal stochastic model that reproduces the results for chaotic systems. Our work supports the claims about universality of our earlier results [I. G. Szendro et al., Phys. Rev. E 76, 025202(R) (2007)] for a specific coupled-map lattice.
Starting from the action-angle variables and using a standard asymptotic expansion, here we present a new derivation of the Wave Kinetic Equation for resonant process of the type $2leftrightarrow 2$. Despite not offering new physical results and desp ite not being more rigorous than others, our procedure has the merit of being straightforward; it allows for a direct control of the random phase and random amplitude hypothesis of the initial wave field. We show that the Wave Kinetic Equation can be derived assuming only initial random phases. The random amplitude approximation has to be taken only at the end, after taking the weak nonlinearity and large box limits. This is because the $delta$-function over frequencies contains the amplitude-dependent nonlinear correction which should be dropped before the random amplitude approximation applies. If $epsilon$ is the small parameter in front of the anharmonic part of the Hamiltonian, the time scale associated with the Wave Kinetic equation is shown to be $1/epsilon^2$. We give evidence that random phase and amplitude hypotheses persist up to a time of the order $1/epsilon$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا