ﻻ يوجد ملخص باللغة العربية
We explain how specific dynamical properties give rise to the limit distribution of sums of deterministic variables at the transition to chaos via the period-doubling route. We study the sums of successive positions generated by an ensemble of initial conditions uniformly distributed in the entire phase space of a unimodal map as represented by the logistic map. We find that these sums acquire their salient, multiscale, features from the repellor preimage structure that dominates the dynamics toward the attractors along the period-doubling cascade. And we explain how these properties transmit from the sums to their distribution. Specifically, we show how the stationary distribution of sums of positions at the Feigebaum point is built up from those associated with the supercycle attractors forming a hierarchical structure with multifractal and discrete scale invariance properties.
As a counterpart to our previous study of the stationary distribution formed by sums of positions at the Feigenbaum point via the period-doubling cascade in the logistic map (Eur. Phys. J. B 87 32, (2014)), we determine the family of related distribu
After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both ana
Ensemble of initial conditions for nonlinear maps can be described in terms of entropy. This ensemble entropy shows an asymptotic linear growth with rate K. The rate K matches the logarithm of the corresponding asymptotic sensitivity to initial condi
In this paper we revisit the Mackey-Glass model for blood-forming process, which was proposed to describe the spontaneous fluctuations of the blood cell counts in normal individuals and the first stage of chronic myelocytic (or granylocytic) leukemia
The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of