ترغب بنشر مسار تعليمي؟ اضغط هنا

Conduction at the onset of chaos

71   0   0.0 ( 0 )
 نشر من قبل Fulvio Baldovin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fulvio Baldovin




اسأل ChatGPT حول البحث

After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsagers picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.



قيم البحث

اقرأ أيضاً

Ensemble of initial conditions for nonlinear maps can be described in terms of entropy. This ensemble entropy shows an asymptotic linear growth with rate K. The rate K matches the logarithm of the corresponding asymptotic sensitivity to initial condi tions lambda. The statistical formalism and the equality K=lambda can be extended to weakly chaotic systems by suitable and corresponding generalizations of the logarithm and of the entropy. Using the logistic map as a test case we consider a wide class of deformed statistical description which includes Tsallis, Abe and Kaniadakis proposals. The physical criterion of finite-entropy growth K strongly restricts the suitable entropies. We study how large is the region in parameter space where the generalized description is useful.
We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically, we show that the onset of quantum chaos is marke d by maxima of the typical fidelity susceptibilities that scale with the square of the inverse average level spacing, saturating their upper bound, and that the strength of the integrability/localization breaking perturbation at these maxima decreases with increasing system size. We also show that the spectral function below the Thouless energy (in the quantum-chaotic regime) diverges when approaching those maxima. Our results suggest that, in the thermodynamic limit, arbitrarily small integrability/localization breaking perturbations result in quantum chaos in the many-body quantum systems studied here.
We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att ractors at period-doubling accumulation points and at tangent bifurcations to describe features of glassy dynamics, critical fluctuations and localization transitions. We recall that trajectories pertaining to the routes to chaos form families of time series that are readily transformed into networks via the Horizontal Visibility algorithm, and this in turn facilitates establish connections between entropy and Renormalization Group properties. We discretize the replicator equation of game theory to observe the onset of chaos in familiar social dilemmas, and also to mimic the evolution of high-dimensional ecological models. We describe an analytical framework of nonlinear mappings that reproduce rank distributions of large classes of data (including Zipfs law). We extend the discussion to point out a common circumstance of drastic contraction of configuration space driven by the attractors of these mappings. We mention the relation of generalized entropy expressions with the dynamics along and at the period doubling, intermittency and quasi-periodic routes to chaos. Finally, we refer to additional natural phenomena in complex systems where these conditions may manifest.
We explain how specific dynamical properties give rise to the limit distribution of sums of deterministic variables at the transition to chaos via the period-doubling route. We study the sums of successive positions generated by an ensemble of initia l conditions uniformly distributed in the entire phase space of a unimodal map as represented by the logistic map. We find that these sums acquire their salient, multiscale, features from the repellor preimage structure that dominates the dynamics toward the attractors along the period-doubling cascade. And we explain how these properties transmit from the sums to their distribution. Specifically, we show how the stationary distribution of sums of positions at the Feigebaum point is built up from those associated with the supercycle attractors forming a hierarchical structure with multifractal and discrete scale invariance properties.
We numerically investigate the sensitivity to initial conditions of asymmetric unimodal maps $x_{t+1} = 1-a|x_t|^{z_i}$ ($i=1,2$ correspond to $x_t>0$ and $x_t<0$ respectively, $z_i >1$, $0<aleq 2$, $t=0,1,2,...$) at the edge of chaos. We employ thre e distinct algorithms to characterize the power-law sensitivity to initial conditions at the edge of chaos, namely: direct measure of the divergence of initially nearby trajectories, the computation of the rate of increase of generalized nonextensive entropies $S_q$ and multifractal analysis. The first two methods provide consistent estimates for the exponent governing the power-law sensitivity. In addition to this, we verify that the multifractal analysis does not provide precise estimates of the singularity spectrum $f(alpha)$, specially near its extremal points. Such feature prevents to perform a fine check of the accuracy of the scaling relation between $f(alpha)$ and the entropic index $q$, thus restricting the applicability of the multifractal analysis for studing the sensitivity to initial conditions in this class of asymmetric maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا