ﻻ يوجد ملخص باللغة العربية
After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsagers picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.
Ensemble of initial conditions for nonlinear maps can be described in terms of entropy. This ensemble entropy shows an asymptotic linear growth with rate K. The rate K matches the logarithm of the corresponding asymptotic sensitivity to initial condi
We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically, we show that the onset of quantum chaos is marke
We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att
We explain how specific dynamical properties give rise to the limit distribution of sums of deterministic variables at the transition to chaos via the period-doubling route. We study the sums of successive positions generated by an ensemble of initia
We numerically investigate the sensitivity to initial conditions of asymmetric unimodal maps $x_{t+1} = 1-a|x_t|^{z_i}$ ($i=1,2$ correspond to $x_t>0$ and $x_t<0$ respectively, $z_i >1$, $0<aleq 2$, $t=0,1,2,...$) at the edge of chaos. We employ thre