ترغب بنشر مسار تعليمي؟ اضغط هنا

A solar twin in the eclipsing binary LL Aqr

202   0   0.0 ( 0 )
 نشر من قبل Dariusz Graczyk
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the course of a project to study eclipsing binary stars in vinicity of the Sun, we found that the cooler component of LL Aqr is a solar twin candidate. This is the first known star with properties of a solar twin existing in a non-interacting eclipsing binary, offering an excellent opportunity to fully characterise its physical properties with very high precision. We used extensive multi-band, archival photometry and the Super-WASP project and high-resolution spectroscopy obtained from the HARPS and CORALIE spectrographs. The spectra of both components were decomposed and a detailed LTE abundance analysis was performed. The light and radial velocity curves were simultanously analysed with the Wilson-Devinney code. The resulting highly precise stellar parameters were used for a detailed comparison with PARSEC, MESA, and GARSTEC stellar evolution models. LL Aqr consists of two main-sequence stars (F9 V + G3 V) with masses of M1 = 1.1949$pm$0.0007 and M2=1.0337$pm$0.0007 $M_odot$, radii R1 = 1.321$pm$0.006 and R2 = 1.002$pm$0.005 $R_odot$, temperatures T1=6080$pm$45 K and T2=5703$pm$50 K and solar chemical composition [M/H]=0.02$pm$0.05 dex. The absolute dimensions, radiative and photometric properties, and atmospheric abundances of the secondary are all fully consistent with being a solar twin. Both stars are cooler by about 3.5 $sigma$ or less metal abundant by 5$sigma$ than predicted by standard sets of stellar evolution models. When advanced modelling was performed, we found that full agreement with observations can only be obtained for values of the mixing length and envelope overshooting parameters that are hard to accept. The most reasonable and physically justified model fits found with MESA and GARSTEC codes still have discrepancies with observations but only at the level of 1$sigma$.



قيم البحث

اقرأ أيضاً

Our aim is to precisely measure the physical parameters of the eclipsing binary IO Aqr and derive a distance to this system by applying a surface brightness - colour relation. Our motivation is to combine these parameters with future precise distance determinations from the GAIA space mission to derive precise surface brightness - colour relations for stars. We extensively used photometry from the Super-WASP and ASAS projects and precise radial velocities obtained from HARPS and CORALIE high-resolution spectra. We analysed light curves with the code JKTEBOP and radial velocity curves with the Wilson-Devinney program. We found that IO Aqr is a hierarchical triple system consisting of a double-lined short-period (P=2.37 d) spectroscopic binary and a low-luminosity and low-mass companion star orbiting the binary with a period of ~25000 d (~70 yr) on a very eccentric orbit. We derive high-precision (better than 1%) physical parameters of the inner binary, which is composed of two slightly evolved main-sequence stars (F5 V-IV + F6 V-IV) with masses of M1=1.569+/-0.004 and M2=1.655+/-0.004 M_sun and radii R1=2.19+/-0.02 and R2=2.49+/-0.02 R_sun. The companion is most probably a late K-type dwarf with mass ~0.6 M_sun. The distance to the system resulting from applying a (V-K) surface brightness - colour relation is 255+/-6(stat.)+/-6(sys.) pc, which agrees well with the Hipparcos value of 270+/-73 pc, but is more precise by a factor of eight.
146 - S.-B. Qian , L. Liu , W.-P. Liao 2011
Using the precise times of mid-egress of the eclipsing polar HU Aqr, we discovered that this polar is orbited by two or more giant planets. The two planets detected so far have masses of at least 5.9 and 4.5,M_{Jup}. Their respective distances from t he polar are 3.6 AU and 5.4 AU with periods of 6.54 and 11.96 years, respectively. The observed rate of period decrease derived from the downward parabolic change in O-C curve is a factor 15 larger than the value expected for gravitational radiation. This indicates that it may be only a part of a long-period cyclic variation, revealing the presence of one more planet. It is interesting to note that the two detected circumbinary planets follow the Titus-Bode law of solar planets with n=5 and 6. We estimate that another 10 years of observations will reveal the presence of the predicted third planet.
HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as ou t-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M$_odot$. The primarys longitudinal magnetic field $langle B_z rangle$ varies between about $+100$ and $-250$ G, suggesting a surface magnetic dipole strength $B_{rm d} = 850$~G. Bayesian analysis of the Stokes $V$ profiles indicates $B_{rm d} = 650$~G for the primary and $B_{rm d} < 110$ G for the secondary. The primarys line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that stars chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete.
Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activ ity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.
Thorstensen (2020) recently argued that the cataclysmic variable (CV) LAMOST J024048.51+195226.9 may be a twin to the unique magnetic propeller system AE Aqr. If this is the case, two predictions are that it should display a short period white dwarf spin modulation, and that it should be a bright radio source. We obtained follow-up optical and radio observations of this CV, in order to see if this holds true. Our optical high-speed photometry does not reveal a white dwarf spin signal, but lacks the sensitivity to detect a modulation similar to the 33-s spin signal seen in AE Aqr. We detect the source in the radio, and measure a radio luminosity similar to that of AE Aqr and close to the highest so far reported for a CV. We also find good evidence for radio variability on a time scale of tens of minutes. Optical polarimetric observations produce no detection of linear or circular polarization. While we are not able to provide compelling evidence, our observations are all consistent with this object being a propeller system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا