ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a planetary system orbiting the eclipsing polar HU Aqr

97   0   0.0 ( 0 )
 نشر من قبل Liang Liu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the precise times of mid-egress of the eclipsing polar HU Aqr, we discovered that this polar is orbited by two or more giant planets. The two planets detected so far have masses of at least 5.9 and 4.5,M_{Jup}. Their respective distances from the polar are 3.6 AU and 5.4 AU with periods of 6.54 and 11.96 years, respectively. The observed rate of period decrease derived from the downward parabolic change in O-C curve is a factor 15 larger than the value expected for gravitational radiation. This indicates that it may be only a part of a long-period cyclic variation, revealing the presence of one more planet. It is interesting to note that the two detected circumbinary planets follow the Titus-Bode law of solar planets with n=5 and 6. We estimate that another 10 years of observations will reveal the presence of the predicted third planet.

قيم البحث

اقرأ أيضاً

309 - C.M. Bridge 2002
We apply an eclipse mapping technique to observations of the eclipsing magnetic cataclysmic variable HU Aqr. The observations were made with the S-Cam2 Superconducting Tunnel Junction detector at the WHT in October 2000, providing high signal-to-nois e observations with simultaneous spectral and temporal resolution. HU Aqr was in a bright (high accretion) state (V=14.7) and the stream contributes as much to the overall system brightness as the accretion region on the white dwarf. The stream is modelled assuming accretion is occuring onto only one pole of the white dwarf. We find enhanced brightness towards the accretion region from irradiation and interpret enhanced brightness in the threading region, where the ballistic stream is redirected to follow the magnetic field lines of the white dwarf, as magnetic heating from the stream-field interaction, which is consistent with recent theoretical results. Changes in the stream eclipse profile over one orbital period indicate that the magnetic heating process is unstable.
We study the mid-egress eclipse timing data gathered for the cataclysmic binary HU Aquarii during the years 1993-2014. The (O-C) residuals were previously attributed to a single ~7 Jupiter mass companion in ~5 au orbit or to a stable 2-planet system with an unconstrained outermost orbit. We present 22 new observations gathered between June, 2011 and July, 2014 with four instruments around the world. They reveal a systematic deviation of ~60 - 120 seconds from the older ephemeris. We re-analyse the whole set of the timing data available. Our results provide an erratum to the previous HU Aqr planetary models, indicating that the hypothesis for a third and fourth body in this system is uncertain. The dynamical stability criterion and a particular geometry of orbits rule out coplanar 2-planet configurations. A putative HU Aqr planetary system may be more complex, e.g., highly non-coplanar. Indeed, we found examples of 3-planet configurations with the middle planet in a retrograde orbit, which are stable for at least 1Gyr, and consistent with the observations. The (O-C) may be also driven by oscillations of the gravitational quadrupole moment of the secondary, as predicted by the Lanza et al. modification of the Applegate mechanism. Further systematic, long-term monitoring of HU Aqr is required to interpret the (O-C) residuals.
171 - A.D. Schwope , B.D. Thinius 2018
The magnetic cataclysmic variable HU Aquarii displayed pronounced modulations of its eclipse timing. These were intensively modeled and discussed in recent years in the framework of planets orbiting the binary or the Applegate effect. No scenario yie lded a unique and satisfactory interpretation of the data. Here we present 26 new eclipse epochs obtained between 2014 and 2018. The steep and continuous decrease of the orbital period observed in the time interval 2010 - 2013 has slowed down sometimes before mid 2016. The new slope in the (O-C)-diagram of eclipse arrival times will further constrain physical models of its complex shape.
98 - M. Bours 2014
We present new eclipse observations of the polar (i.e. semi-detached magnetic white dwarf + M-dwarf binary) HU Aqr, and mid-egress times for each eclipse, which continue to be observed increasingly early. Recent eclipses occurred more than 70 seconds earlier than the prediction from the latest model that invoked a single circumbinary planet to explain the observed orbital period variations, thereby conclusively proving this model to be incorrect. Using ULTRACAM data, we show that mid-egress times determined for simultaneous data taken at different wavelengths agree with each other. The large variations in the observed eclipse times cannot be explained by planetary models containing up to three planets, because of poor fits to the data as well as orbital instability on short time scales. The peak-to-peak amplitude of the O-C diagram of almost 140 seconds is also too great to be caused by Applegates mechanism, movement of the accretion spot on the surface of the white dwarf, or by asynchronous rotation of the white dwarf. What does cause the observed eclipse time variations remains a mystery.
In the course of a project to study eclipsing binary stars in vinicity of the Sun, we found that the cooler component of LL Aqr is a solar twin candidate. This is the first known star with properties of a solar twin existing in a non-interacting ecli psing binary, offering an excellent opportunity to fully characterise its physical properties with very high precision. We used extensive multi-band, archival photometry and the Super-WASP project and high-resolution spectroscopy obtained from the HARPS and CORALIE spectrographs. The spectra of both components were decomposed and a detailed LTE abundance analysis was performed. The light and radial velocity curves were simultanously analysed with the Wilson-Devinney code. The resulting highly precise stellar parameters were used for a detailed comparison with PARSEC, MESA, and GARSTEC stellar evolution models. LL Aqr consists of two main-sequence stars (F9 V + G3 V) with masses of M1 = 1.1949$pm$0.0007 and M2=1.0337$pm$0.0007 $M_odot$, radii R1 = 1.321$pm$0.006 and R2 = 1.002$pm$0.005 $R_odot$, temperatures T1=6080$pm$45 K and T2=5703$pm$50 K and solar chemical composition [M/H]=0.02$pm$0.05 dex. The absolute dimensions, radiative and photometric properties, and atmospheric abundances of the secondary are all fully consistent with being a solar twin. Both stars are cooler by about 3.5 $sigma$ or less metal abundant by 5$sigma$ than predicted by standard sets of stellar evolution models. When advanced modelling was performed, we found that full agreement with observations can only be obtained for values of the mixing length and envelope overshooting parameters that are hard to accept. The most reasonable and physically justified model fits found with MESA and GARSTEC codes still have discrepancies with observations but only at the level of 1$sigma$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا