ترغب بنشر مسار تعليمي؟ اضغط هنا

The Araucaria Project. Precise physical parameters of the eclipsing binary IO Aqr

71   0   0.0 ( 0 )
 نشر من قبل Dariusz Graczyk
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our aim is to precisely measure the physical parameters of the eclipsing binary IO Aqr and derive a distance to this system by applying a surface brightness - colour relation. Our motivation is to combine these parameters with future precise distance determinations from the GAIA space mission to derive precise surface brightness - colour relations for stars. We extensively used photometry from the Super-WASP and ASAS projects and precise radial velocities obtained from HARPS and CORALIE high-resolution spectra. We analysed light curves with the code JKTEBOP and radial velocity curves with the Wilson-Devinney program. We found that IO Aqr is a hierarchical triple system consisting of a double-lined short-period (P=2.37 d) spectroscopic binary and a low-luminosity and low-mass companion star orbiting the binary with a period of ~25000 d (~70 yr) on a very eccentric orbit. We derive high-precision (better than 1%) physical parameters of the inner binary, which is composed of two slightly evolved main-sequence stars (F5 V-IV + F6 V-IV) with masses of M1=1.569+/-0.004 and M2=1.655+/-0.004 M_sun and radii R1=2.19+/-0.02 and R2=2.49+/-0.02 R_sun. The companion is most probably a late K-type dwarf with mass ~0.6 M_sun. The distance to the system resulting from applying a (V-K) surface brightness - colour relation is 255+/-6(stat.)+/-6(sys.) pc, which agrees well with the Hipparcos value of 270+/-73 pc, but is more precise by a factor of eight.



قيم البحث

اقرأ أيضاً

The status of our work on binary classical cepheid systems in the Large Magellanic Cloud is presented. We report on results from our follow up of two eclipsing binary cepheids OGLE-LMC-CEP-0227 and OGLE-LMC-CEP-1812. Here we presented for the first t ime confirmation that a third cepheid OGLE-LMC-CEP-2532 is a true eclipsing binary cepheid with a period of 800 days. Two other very good candidates for eclipsing binaries detected during OGLE-IV survey are also discussed.
We present ULTRACAM photometry and X-Shooter spectroscopy of the eclipsing double white dwarf binary CSS 41177, the only such system that is also a double-lined spectroscopic binary. Combined modelling of the light curves and radial velocities yield masses and radii for both white dwarfs without the need to assume mass-radius relations. We find that the primary white dwarf has a mass of M1 = 0.38(2) Msun and a radius of R1 = 0.0222(4) Rsun. The secondary white dwarfs mass and radius are M2 = 0.32(1) Msun and R2 = 0.0207(4) Rsun, and its temperature and surface gravity (T2 = 11678(313) K, log(g2) = 7.32(2)) put it close to the white dwarf instability strip. However, we find no evidence for pulsations to roughly 0.5% relative amplitude. Both masses and radii are consistent with helium white dwarf models with thin hydrogen envelopes of 0.0001 Mstar. The two stars will merge in 1.14 Gyr due to angular momentum loss via gravitational wave emission.
In the course of a project to study eclipsing binary stars in vinicity of the Sun, we found that the cooler component of LL Aqr is a solar twin candidate. This is the first known star with properties of a solar twin existing in a non-interacting ecli psing binary, offering an excellent opportunity to fully characterise its physical properties with very high precision. We used extensive multi-band, archival photometry and the Super-WASP project and high-resolution spectroscopy obtained from the HARPS and CORALIE spectrographs. The spectra of both components were decomposed and a detailed LTE abundance analysis was performed. The light and radial velocity curves were simultanously analysed with the Wilson-Devinney code. The resulting highly precise stellar parameters were used for a detailed comparison with PARSEC, MESA, and GARSTEC stellar evolution models. LL Aqr consists of two main-sequence stars (F9 V + G3 V) with masses of M1 = 1.1949$pm$0.0007 and M2=1.0337$pm$0.0007 $M_odot$, radii R1 = 1.321$pm$0.006 and R2 = 1.002$pm$0.005 $R_odot$, temperatures T1=6080$pm$45 K and T2=5703$pm$50 K and solar chemical composition [M/H]=0.02$pm$0.05 dex. The absolute dimensions, radiative and photometric properties, and atmospheric abundances of the secondary are all fully consistent with being a solar twin. Both stars are cooler by about 3.5 $sigma$ or less metal abundant by 5$sigma$ than predicted by standard sets of stellar evolution models. When advanced modelling was performed, we found that full agreement with observations can only be obtained for values of the mixing length and envelope overshooting parameters that are hard to accept. The most reasonable and physically justified model fits found with MESA and GARSTEC codes still have discrepancies with observations but only at the level of 1$sigma$.
V923 Sco is a bright ($V$ = 5.91), nearby ($pi$ = 15.46$pm$0.40 mas) southern eclipsing binary. Because both components are slow rotators, the minimum masses of the components are known with 0.2% precision from spectroscopy. The system seems ideal fo r very precise mass, radius, and luminosity determinations and, owing to its proximity and long orbital period ($sim$ 34.8 days), promises to be resolved with long-baseline interferometry. The principal aim is very accurate determinations of absolute stellar parameters for both components of the eclipsing binary and a model-independent determination of the distance.} New high-precision photometry of both eclipses of V923 Sco with the MOST satellite was obtained. The system was spatially resolved with the VLTI AMBER, PIONIER, and GRAVITY instruments at nine epochs. Combining the projected size of the spectroscopic orbit (in km) and visual orbit (in mas) the distance to the system is derived. Simultaneous analysis of photometric, spectroscopic, and interferometric data was performed to obtain a robust determination of the absolute parameters. Very precise absolute parameters of the components were derived in spite of the parameter correlations. The primary component is found to be overluminous for its mass. Combining spectroscopic and interferometric observations enabled us to determine the distance to V923 Sco with better than 0.2% precision, which provides a stringent test of Gaia parallaxes. It is shown that combining spectroscopic and interferometric observations of nearby eclipsing binaries can lead to extremely accurate parallaxes and stellar parameters.
We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 d ays. Using spectroscopic data from three 4-8-m telescopes and photometry spanning 22 years, we were able to derive the dynamical masses and radii of both stars with exquisite accuracy. Both stars in the system are very similar in mass, radius and color, but the companion is a stable, non-pulsating star. The Cepheid is slightly more massive and bigger (M_1 = 3.70 +/- 0.03M_sun, R_1 = 28.6 +/- 0.2R_sun) than its companion (M_2 = 3.60 +/- 0.03M_sun, R_2 = 26.6 +/- 0.2R_sun). Within the observational uncertainties both stars have the same effective temperature of 6030 +/- 150K. Evolutionary tracks place both stars inside the classical Cepheid instability strip, but it is likely that future improved temperature estimates will move the stable giant companion just beyond the red edge of the instability strip. Within current observational and theoretical uncertainties, both stars fit on a 205 Myr isochrone arguing for their common age. From our model, we determine a value of the projection factor of p = 1.37 +/- 0.07 for the Cepheid in the OGLE-LMC562.05.9009 system. This is the second Cepheid for which we could measure its p-factor with high precision directly from the analysis of an eclipsing binary system, which represents an important contribution towards a better calibration of Baade-Wesselink methods of distance determination for Cepheids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا