ترغب بنشر مسار تعليمي؟ اضغط هنا

High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

142   0   0.0 ( 0 )
 نشر من قبل Julien Laurat
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6times10^4$ photons/(s$cdot$mW$cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.



قيم البحث

اقرأ أيضاً

We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection effic iency at 78 +- 2 % with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout, and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to TC appears to be a unique property of amorphous WSi.
We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently-coupled photons of 1550nm waveleng th using bidirectional waveguide coupling for two orthogonal polarization directions. We investigate the internal detection efficiency as well as detector absorption using coupling-independent characterization measurements. Furthermore, we describe strategies to improve the yield and efficiency of these devices.
We present an alternative approach to the fabrication of highly efficient superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide. Using well-established technologies for the deposition of dielectric mirrors and anti-refl ection coatings in conjunction with an embedded WSi bilayer photon absorber structure, we fabricated a bandwidth-enhanced detector. It exhibits system detection efficiencies (SDE) higher than $left(87.1pm1.3right),%$ in the range from $1450,mathrm{nm}$ to $1640,mathrm{nm}$, with a maximum of $left(92.9pm1.1right),%$ at $1515,mathrm{nm}$. Our measurements indicate SDE enhancements of up to $left(18.4pm1.7right),%$ over a single-absorber WSi SNSPD. The latter has been optimized for 1550 nm for comparison and exhibits maximum SDE of $left(93.5pm1.2right),%$ at 1555 nm. We emphasize that our technological approach has been tested with, but is not limited to, the wavelengths and absorber material presented here. It could be adapted flexibly for multi-color detector systems from the ultraviolet to the mid-infrared wavelength range. This bears the potential for significant improvements in many current quantum optical experiments and applications as well as for detector commercialization.
We demonstrate waveguide-integrated superconducting nanowire single-photon detectors on thin-film lithium niobate (LN). Using a 250 um-long NbN superconducting nanowire lithographically defined on top of a 125 um-long LN nanowaveguide, on-chip detect ion efficiency of 46% is realized with simultaneous high performance in dark count rate and timing jitter. As LN possesses high second-order nonlinear c{hi}(2) and electro-optic properties, an efficient single-photon detector on thin-film LN opens up the possibility to construct small scale fully-integrated quantum photonic chip which includes single-photon sources, filters, tunable quantum gates and detectors.
We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a spatial resolution of 10 nm. We experimentally find a strong variation in the local detection efficiency of the de vice. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as function of device geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا