ﻻ يوجد ملخص باللغة العربية
We report a method that exploits a connection between quantum contextuality and graph theory to reveal any form of quantum contextuality in high-precision experiments. We use this technique to identify a graph which corresponds to an extreme form of quantum contextuality unnoticed before and test it using high-dimensional quantum states encoded in the linear transverse momentum of single photons. Our results open the door to the experimental exploration of quantum contextuality in all its forms, including those needed for quantum computation.
We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et. al. are first reformulated in terms of traceless observables which can be measured in an NM
Weak value measurements have recently given rise to a large interest for both the possibility of measurement amplification and the chance of further quantum mechanics foundations investigation. In particular, a question emerged about weak values bein
Contextuality is a fundamental property of quantum theory and a critical resource for quantum computation. Here, we experimentally observe the arguably cleanest form of contextuality in quantum theory [A. Cabello emph{et al.}, Phys. Rev. Lett. textbf
We experimentally demonstrate that when three single photons transmit through two polarization channels, in a well-defined pre- and postselected ensemble, there are no two photons in the same polarization channel by weak-strength measurement, a count
We report an experimental demonstration of Schumachers quantum noiseless coding theorem. Our experiment employs a sequence of single photons each of which represents three qubits. We initially prepare each photon in one of a set of 8 non-orthogonal c