ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of quantum contextuality on an NMR qutrit

105   0   0.0 ( 0 )
 نشر من قبل Arvind
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et. al. are first reformulated in terms of traceless observables which can be measured in an NMR experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four different initial states of a spin-1 deuterium nucleus oriented in a liquid crystal matrix, and follow the violation as the states evolve in time. We also describe and experimentally perform a single-shot test of contextuality for a subclass of qutrit states whose density matrix is diagonal in the energy basis.



قيم البحث

اقرأ أيضاً

177 - Hongwei Chen , Dawei Lu , Bo Chong 2011
The method of quantum cloning is divided into two main categories: approximate and probabilistic quantum cloning. The former method is used to approximate an unknown quantum state deterministically, and the latter can be used to faithfully copy the s tate probabilistically. So far, many approximate cloning machines have been experimentally demonstrated, but probabilistic cloning remains an experimental challenge, as it requires more complicated networks and a higher level of precision control. In this work, we designed an efficient quantum network with a limited amount of resources, and performed the first experimental demonstration of probabilistic quantum cloning in an NMR quantum computer. In our experiment, the optimal cloning efficiency proposed by Duan and Guo [Phys. Rev. Lett. textbf{80}, 4999 (1998)] is achieved.
We present the NMR implementation of a recently proposed quantum algorithm to find the parity of a permutation. In the usual qubit model of quantum computation, speedup requires the presence of entanglement and thus cannot be achieved by a single qub it. On the other hand, a qutrit is qualitatively more quantum than a qubit because of the existence of quantum contextuality and a single qutrit can be used for computing. We use the deuterium nucleus oriented in a liquid crystal as the experimental qutrit. This is the first experimental exploitation of a single qutrit to carry out a computational task.
We report a method that exploits a connection between quantum contextuality and graph theory to reveal any form of quantum contextuality in high-precision experiments. We use this technique to identify a graph which corresponds to an extreme form of quantum contextuality unnoticed before and test it using high-dimensional quantum states encoded in the linear transverse momentum of single photons. Our results open the door to the experimental exploration of quantum contextuality in all its forms, including those needed for quantum computation.
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report the first experimental realization of the complete process of deterministic one-way quantum Deut sch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.
We argue that the experiment described in the recent Letter by Zu et al. [Phys. Rev. Lett. 109, 150401 (2012); arXiv:1207.0059v1] does not allow to make conclusions about contextuality, since the measurement of the observables as well as the preparat ion of the state manifestly depend on the chosen context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا