ترغب بنشر مسار تعليمي؟ اضغط هنا

Experiment Investigating the Connection between Weak Values and Contextuality

127   0   0.0 ( 0 )
 نشر من قبل Fabrizio Piacentini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak value measurements have recently given rise to a large interest for both the possibility of measurement amplification and the chance of further quantum mechanics foundations investigation. In particular, a question emerged about weak values being proof of the incompatibility between Quantum Mechanics and Non-Contextual Hidden Variables Theories (NCHVT). A test to provide a conclusive answer to this question was given in [M. Pusey, Phys. Rev. Lett. 113, 200401 (2014)], where a theorem was derived showing the NCHVT incompatibility with the observation of anomalous weak values under specific conditions. In this paper we realize this proposal, clearly pointing out the strict connection between weak values and the contextual nature of Quantum Mechanics.



قيم البحث

اقرأ أيضاً

We report a method that exploits a connection between quantum contextuality and graph theory to reveal any form of quantum contextuality in high-precision experiments. We use this technique to identify a graph which corresponds to an extreme form of quantum contextuality unnoticed before and test it using high-dimensional quantum states encoded in the linear transverse momentum of single photons. Our results open the door to the experimental exploration of quantum contextuality in all its forms, including those needed for quantum computation.
73 - Holger F. Hofmann 2020
The quantum fluctuations of a physical property can be observed in the measurement statistics of any measurement that is at least partially sensitive to that physical property. Quantum theory indicates that the effective distribution of values taken by the physical property depends on the specific measurement context based on which these values are determined and weak values have been identified as the contextual values describing this dependence of quantum fluctuations on the measurement context. Here, the relation between classical statistics and quantum contextuality is explored by considering systems entangled with a quantum reference. The quantum fluctuations of the system can then be steered by precise projective measurements of the reference, resulting in different contextual values of the quantum fluctuations depending on the effective state preparation context determined by the measurement of the reference. The results show that mixed state statistics are consistent with a wide range of potential contexts, indicating that the precise definition of a context requires maximal quantum coherence in both state preparation and measurement.
120 - J. S. Lundeen , K. J. Resch 2005
Weak measurements are a new tool for characterizing post-selected quantum systems during their evolution. Weak measurement was originally formulated in terms of von Neumann interactions which are practically available for only the simplest single-par ticle observables. In the present work, we extend and greatly simplify a recent, experimentally feasible, reformulation of weak measurement for multiparticle observables [Resch and Steinberg (2004, Phys. Rev. Lett., 92, 130402)]. We also show that the resulting ``joint weak values take on a particularly elegant form when expressed in terms of annihilation operators.
We demonstrate that Aharonov-Albert-Vaidman (AAV) weak values have a direct relationship with the response function of a system, and have a much wider range of applicability in both the classical and quantum domains than previously thought. Using thi s idea, we have built an optical system, based on a birefringent photonic crystal, with an infinite number of weak values. In this system, the propagation speed of a polarized light pulse displays both superluminal and slow light behavior with a sharp transition between the two regimes. We show that this systems response possesses two-dimensional, vortex-antivortex phase singularities. Important consequences for optical signal processing are discussed.
133 - Lars M. Johansen 2007
I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of in teraction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا