ﻻ يوجد ملخص باللغة العربية
We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control is also possible in a noisy environment, where both the process of state-observation and the process of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new analysis where entropy plays a central role, both to measure the rate at which progress towards an acceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition in the noiseless case.
We develop a framework for the rigorous analysis of focused stochastic local search algorithms. These are algorithms that search a state space by repeatedly selecting some constraint that is violated in the current state and moving to a random nearby
We develop tools for analyzing focused stochastic local search algorithms. These are algorithms which search a state space probabilistically by repeatedly selecting a constraint that is violated in the current state and moving to a random nearby stat
In this note, we prove a tight lower bound on the joint entropy of $n$ unbiased Bernoulli random variables which are $n/2$-wise independent. For general $k$-wise independence, we give new lower bounds by adapting Navon and Samorodnitskys Fourier proo
The total influence of a function is a central notion in analysis of Boolean functions, and characterizing functions that have small total influence is one of the most fundamental questions associated with it. The KKL theorem and the Friedgut junta t
We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the con