ﻻ يوجد ملخص باللغة العربية
In this note, we prove a tight lower bound on the joint entropy of $n$ unbiased Bernoulli random variables which are $n/2$-wise independent. For general $k$-wise independence, we give new lower bounds by adapting Navon and Samorodnitskys Fourier proof of the `LP bound on error correcting codes. This counts as partial progress on a problem asked by Gavinsky and Pudlak.
How low can the joint entropy of $n$ $d$-wise independent (for $dge2$) discrete random variables be, subject to given constraints on the individual distributions (say, no value may be taken by a variable with probability greater than $p$, for $p<1$)?
We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succee
This note resolves an open problem asked by Bezrukov in the open problem session of IWOCA 2014. It shows an equivalence between regular graphs and graphs for which a sequence of invariants presents some symmetric property. We extend this result to a few other sequences.
The total influence of a function is a central notion in analysis of Boolean functions, and characterizing functions that have small total influence is one of the most fundamental questions associated with it. The KKL theorem and the Friedgut junta t
In this short note, we show two NP-completeness results regarding the emph{simultaneous representation problem}, introduced by Lubiw and Jampani. The simultaneous representation problem for a given class of intersection graphs asks if some $k$ graphs