ﻻ يوجد ملخص باللغة العربية
We develop a framework for the rigorous analysis of focused stochastic local search algorithms. These are algorithms that search a state space by repeatedly selecting some constraint that is violated in the current state and moving to a random nearby state that addresses the violation, while hopefully not introducing many new ones. An important class of focused local search algorithms with provable performance guarantees has recently arisen from algorithmizations of the Lov{a}sz Local Lemma (LLL), a non-constructive tool for proving the existence of satisfying states by introducing a background measure on the state space. While powerful, the state transitions of algorithms in this class must be, in a precise sense, perfectly compatible with the background measure. In many applications this is a very restrictive requirement and one needs to step outside the class. Here we introduce the notion of emph{measure distortion} and develop a framework for analyzing arbitrary focused stochastic local search algorithms, recovering LLL algorithmizations as the special case of no distortion. Our framework takes as input an arbitrary such algorithm and an arbitrary probability measure and shows how to use the measure as a yardstick of algorithmic progress, even for algorithms designed independently of the measure.
We develop tools for analyzing focused stochastic local search algorithms. These are algorithms which search a state space probabilistically by repeatedly selecting a constraint that is violated in the current state and moving to a random nearby stat
Let $Phi = (V, mathcal{C})$ be a constraint satisfaction problem on variables $v_1,dots, v_n$ such that each constraint depends on at most $k$ variables and such that each variable assumes values in an alphabet of size at most $[q]$. Suppose that eac
We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovasz Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succee
We study the problem of sampling an approximately uniformly random satisfying assignment for atomic constraint satisfaction problems i.e. where each constraint is violated by only one assignment to its variables. Let $p$ denote the maximum probabilit
Genome assembly is a fundamental problem in Bioinformatics, requiring to reconstruct a source genome from an assembly graph built from a set of reads (short strings sequenced from the genome). A notion of genome assembly solution is that of an arc-co