ﻻ يوجد ملخص باللغة العربية
A formula for the corner charge in terms of the bulk quadrupole moment is derived for two-dimensional periodic systems. This is an analog of the formula for the surface charge density in terms of the bulk polarization. In the presence of an $n$-fold rotation symmetry with $n=3$, $4$, and $6$, the quadrupole moment is quantized and is independent of the spread or shape of Wannier orbitals, depending only on the location of Wannier centers of filled bands. In this case, our formula predicts the fractional part of the quadrupole moment purely from the bulk property. The system can contain many-body interactions as long as the ground state is gapped and topologically trivial in the sense it is smoothly connected to a product state limit. An extension of these results to three-dimensional systems is also discussed. In three dimensions, in general, even the fractional part of the corner charge is not fully predictable from the bulk perspective even in the presence of point group symmetry.
Quantum entanglement is one essential element to characterize many-body quantum systems. However, so far, the entanglement measures mainly restrict to Hermitian systems. Here, we propose a natural extension of entanglement and Renyi entropies to non-
Recent developments in higher-order topological phases have elucidated on the relationship between nontrivial multipole moments in the bulk and the emergence of fractionally quantized charges at the boundary. Here, we put on the table a proposal of t
Recent studies revealed that the electric multipole moments of insulators result in fractional electric charges localized to the hinges and corners of the sample. We here explore the magnetic analog of this relation. We show that a collinear antiferr
The adsorbed atoms exhibit tendency to occupy a triangular lattice formed by periodic potential of the underlying crystal surface. Such a lattice is formed by, e.g., a single layer of graphane or the graphite surfaces as well as (111) surface of face
We present the real-time renormalization group (RTRG) method as a method to describe the stationary state current through generic multi-level quantum dots with a complex setup in nonequilibrium. The employed approach consists of a very rudiment appro