ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependency Language Models for Transition-based Dependency Parsing

261   0   0.0 ( 0 )
 نشر من قبل Juntao Yu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.



قيم البحث

اقرأ أيضاً

Syntactic parsing using dependency structures has become a standard technique in natural language processing with many different parsing models, in particular data-driven models that can be trained on syntactically annotated corpora. In this paper, w e tackle transition-based dependency parsing using a Perceptron Learner. Our proposed model, which adds more relevant features to the Perceptron Learner, outperforms a baseline arc-standard parser. We beat the UAS of the MALT and LSTM parsers. We also give possible ways to address parsing of non-projective trees.
In recent years, dependency parsing is a fascinating research topic and has a lot of applications in natural language processing. In this paper, we present an effective approach to improve dependency parsing by utilizing supertag features. We perform ed experiments with the transition-based dependency parsing approach because it can take advantage of rich features. Empirical evaluation on Vietnamese Dependency Treebank showed that, we achieved an improvement of 18.92% in labeled attachment score with gold supertags and an improvement of 3.57% with automatic supertags.
134 - Songlin Yang , Kewei Tu 2021
We propose a headed span-based method for projective dependency parsing. In a projective tree, the subtree rooted at each word occurs in a contiguous sequence (i.e., span) in the surface order, we call the span-headword pair textit{headed span}. In t his view, a projective tree can be regarded as a collection of headed spans. It is similar to the case in constituency parsing since a constituency tree can be regarded as a collection of constituent spans. Span-based methods decompose the score of a constituency tree sorely into the score of constituent spans and use the CYK algorithm for global training and exact inference, obtaining state-of-the-art results in constituency parsing. Inspired by them, we decompose the score of a dependency tree into the score of headed spans. We use neural networks to score headed spans and design a novel $O(n^3)$ dynamic programming algorithm to enable global training and exact inference. We evaluate our method on PTB, CTB, and UD, achieving state-of-the-art or comparable results.
In this paper, we study the problem of parsing structured knowledge graphs from textual descriptions. In particular, we consider the scene graph representation that considers objects together with their attributes and relations: this representation h as been proved useful across a variety of vision and language applications. We begin by introducing an alternative but equivalent edge-centric view of scene graphs that connect to dependency parses. Together with a careful redesign of label and action space, we combine the two-stage pipeline used in prior work (generic dependency parsing followed by simple post-processing) into one, enabling end-to-end training. The scene graphs generated by our learned neural dependency parser achieve an F-score similarity of 49.67% to ground truth graphs on our evaluation set, surpassing best previous approaches by 5%. We further demonstrate the effectiveness of our learned parser on image retrieval applications.
Dependency parsing is needed in different applications of natural language processing. In this paper, we present a thorough error analysis for dependency parsing for the Vietnamese language, using two state-of-the-art parsers: MSTParser and MaltParse r. The error analysis results provide us insights in order to improve the performance of dependency parsing for the Vietnamese language.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا