ترغب بنشر مسار تعليمي؟ اضغط هنا

Error Analysis for Vietnamese Dependency Parsing

81   0   0.0 ( 0 )
 نشر من قبل Kiet Nguyen Van
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dependency parsing is needed in different applications of natural language processing. In this paper, we present a thorough error analysis for dependency parsing for the Vietnamese language, using two state-of-the-art parsers: MSTParser and MaltParser. The error analysis results provide us insights in order to improve the performance of dependency parsing for the Vietnamese language.



قيم البحث

اقرأ أيضاً

In recent years, dependency parsing is a fascinating research topic and has a lot of applications in natural language processing. In this paper, we present an effective approach to improve dependency parsing by utilizing supertag features. We perform ed experiments with the transition-based dependency parsing approach because it can take advantage of rich features. Empirical evaluation on Vietnamese Dependency Treebank showed that, we achieved an improvement of 18.92% in labeled attachment score with gold supertags and an improvement of 3.57% with automatic supertags.
Structured sentiment analysis attempts to extract full opinion tuples from a text, but over time this task has been subdivided into smaller and smaller sub-tasks, e,g,, target extraction or targeted polarity classification. We argue that this divisio n has become counterproductive and propose a new unified framework to remedy the situation. We cast the structured sentiment problem as dependency graph parsing, where the nodes are spans of sentiment holders, targets and expressions, and the arcs are the relations between them. We perform experiments on five datasets in four languages (English, Norwegian, Basque, and Catalan) and show that this approach leads to strong improvements over state-of-the-art baselines. Our analysis shows that refining the sentiment graphs with syntactic dependency information further improves results.
260 - Juntao Yu , Bernd Bohnet 2016
In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.
In this paper, we study the problem of parsing structured knowledge graphs from textual descriptions. In particular, we consider the scene graph representation that considers objects together with their attributes and relations: this representation h as been proved useful across a variety of vision and language applications. We begin by introducing an alternative but equivalent edge-centric view of scene graphs that connect to dependency parses. Together with a careful redesign of label and action space, we combine the two-stage pipeline used in prior work (generic dependency parsing followed by simple post-processing) into one, enabling end-to-end training. The scene graphs generated by our learned neural dependency parser achieve an F-score similarity of 49.67% to ground truth graphs on our evaluation set, surpassing best previous approaches by 5%. We further demonstrate the effectiveness of our learned parser on image retrieval applications.
In recent years, Vietnamese Named Entity Recognition (NER) systems have had a great breakthrough when using Deep Neural Network methods. This paper describes the primary errors of the state-of-the-art NER systems on Vietnamese language. After conduct ing experiments on BLSTM-CNN-CRF and BLSTM-CRF models with different word embeddings on the Vietnamese NER dataset. This dataset is provided by VLSP in 2016 and used to evaluate most of the current Vietnamese NER systems. We noticed that BLSTM-CNN-CRF gives better results, therefore, we analyze the errors on this model in detail. Our error-analysis results provide us thorough insights in order to increase the performance of NER for the Vietnamese language and improve the quality of the corpus in the future works.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا