ترغب بنشر مسار تعليمي؟ اضغط هنا

Headed Span-Based Projective Dependency Parsing

135   0   0.0 ( 0 )
 نشر من قبل Songlin Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a headed span-based method for projective dependency parsing. In a projective tree, the subtree rooted at each word occurs in a contiguous sequence (i.e., span) in the surface order, we call the span-headword pair textit{headed span}. In this view, a projective tree can be regarded as a collection of headed spans. It is similar to the case in constituency parsing since a constituency tree can be regarded as a collection of constituent spans. Span-based methods decompose the score of a constituency tree sorely into the score of constituent spans and use the CYK algorithm for global training and exact inference, obtaining state-of-the-art results in constituency parsing. Inspired by them, we decompose the score of a dependency tree into the score of headed spans. We use neural networks to score headed spans and design a novel $O(n^3)$ dynamic programming algorithm to enable global training and exact inference. We evaluate our method on PTB, CTB, and UD, achieving state-of-the-art or comparable results.



قيم البحث

اقرأ أيضاً

98 - Songlin Yang , Kewei Tu 2021
Graph-based methods are popular in dependency parsing for decades. Recently, citet{yang2021headed} propose a headed span-based method. Both of them score all possible trees and globally find the highest-scoring tree. In this paper, we combine these t wo kinds of methods, designing several dynamic programming algorithms for joint inference. Experiments show the effectiveness of our proposed methodsfootnote{Our code is publicly available at url{https://github.com/sustcsonglin/span-based-dependency-parsing}.}.
260 - Juntao Yu , Bernd Bohnet 2016
In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.
Despite the success of sequence-to-sequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new structures built of components observed during training. In this work, we posit that a span-based parser should lead to better compositional generalization. we propose SpanBasedSP, a parser that predicts a span tree over an input utterance, explicitly encoding how partial programs compose over spans in the input. SpanBasedSP extends Pasupat et al. (2019) to be comparable to seq2seq models by (i) training from programs, without access to gold trees, treating trees as latent variables, (ii) parsing a class of non-projective trees through an extension to standard CKY. On GeoQuery, SCAN and CLOSURE datasets, SpanBasedSP performs similarly to strong seq2seq baselines on random splits, but dramatically improves performance compared to baselines on splits that require compositional generalization: from $61.0 rightarrow 88.9$ average accuracy.
Syntactic parsing using dependency structures has become a standard technique in natural language processing with many different parsing models, in particular data-driven models that can be trained on syntactically annotated corpora. In this paper, w e tackle transition-based dependency parsing using a Perceptron Learner. Our proposed model, which adds more relevant features to the Perceptron Learner, outperforms a baseline arc-standard parser. We beat the UAS of the MALT and LSTM parsers. We also give possible ways to address parsing of non-projective trees.
In this paper, we study the problem of parsing structured knowledge graphs from textual descriptions. In particular, we consider the scene graph representation that considers objects together with their attributes and relations: this representation h as been proved useful across a variety of vision and language applications. We begin by introducing an alternative but equivalent edge-centric view of scene graphs that connect to dependency parses. Together with a careful redesign of label and action space, we combine the two-stage pipeline used in prior work (generic dependency parsing followed by simple post-processing) into one, enabling end-to-end training. The scene graphs generated by our learned neural dependency parser achieve an F-score similarity of 49.67% to ground truth graphs on our evaluation set, surpassing best previous approaches by 5%. We further demonstrate the effectiveness of our learned parser on image retrieval applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا