ﻻ يوجد ملخص باللغة العربية
Tail dependence refers to clustering of extreme events. In the context of financial risk management, the clustering of high-severity risks has a devastating effect on the well-being of firms and is thus of pivotal importance in risk analysis.When it comes to quantifying the extent of tail dependence, it is generally agreed that measures of tail dependence must be independent of the marginal distributions of the risks but rather solely copula-dependent. Indeed, all classical measures of tail dependence are such, but they investigate the amount of tail dependence along the main diagonal of copulas, which has often little in common with the concentration of extremes in the copulas domain of definition.In this paper we urge that the classical measures of tail dependence may underestimate the level of tail dependence in copulas. For the Gaussian copula, however, we prove that the classical measures are maximal. The implication of the result is two-fold: On the one hand, it means that in the Gaussian case, the (weak) measures of tail dependence that have been reported and used are of utmost prudence, which must be a reassuring news for practitioners. On the other hand, it further encourages substitution of the Gaussian copula with other copulas that are more tail dependent.
Measures of tail dependence between random variables aim to numerically quantify the degree of association between their extreme realizations. Existing tail dependence coefficients (TDCs) are based on an asymptotic analysis of relevant conditional pr
We present results on the estimation and evaluation of success probabilities for ordinal optimisation over uncountable sets (such as subsets of $mathbb{R}^{d}$). Our formulation invokes an assumption of a Gaussian copula model, and we show that the s
Dependence strucuture estimation is one of the important problems in machine learning domain and has many applications in different scientific areas. In this paper, a theoretical framework for such estimation based on copula and copula entropy -- the
Predicting the occurrence of tail events is of great importance in financial risk management. By employing the method of peak-over-threshold (POT) to identify the financial extremes, we perform a recurrence interval analysis (RIA) on these extremes.
We give a new $q$-$(1+q)$-analogue of the Gaussian coefficient, also known as the $q$-binomial which, like the original $q$-binomial $genfrac{[}{]}{0pt}{}{n}{k}_{q}$, is symmetric in $k$ and $n-k$. We show this $q$-$(1+q)$-binomial is more compact th