ﻻ يوجد ملخص باللغة العربية
We present results on the estimation and evaluation of success probabilities for ordinal optimisation over uncountable sets (such as subsets of $mathbb{R}^{d}$). Our formulation invokes an assumption of a Gaussian copula model, and we show that the success probability can be equivalently computed by assuming a special case of additive noise. We formally prove a lower bound on the success probability under the Gaussian copula model, and numerical experiments demonstrate that the lower bound yields a reasonable approximation to the actual success probability. Lastly, we showcase the utility of our results by guaranteeing high success probabilities with ordinal optimisation.
We study the success probability for a variant of the secretary problem, with noisy observations and multiple offline selection. Our formulation emulates, and is motivated by, problems involving noisy selection arising in the disciplines of stochasti
Monge-Kantorovich distances, otherwise known as Wasserstein distances, have received a growing attention in statistics and machine learning as a powerful discrepancy measure for probability distributions. In this paper, we focus on forecasting a Gaus
Tail dependence refers to clustering of extreme events. In the context of financial risk management, the clustering of high-severity risks has a devastating effect on the well-being of firms and is thus of pivotal importance in risk analysis.When it
We study the explosion of the solutions of the SDE in the quasi-Gaussian HJM model with a CEV-type volatility. The quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low dimensional Mar
The unsupervised domain adaptation (UDA) has been widely adopted to alleviate the data scalability issue, while the existing works usually focus on classifying independently discrete labels. However, in many tasks (e.g., medical diagnosis), the label