ﻻ يوجد ملخص باللغة العربية
Predicting the occurrence of tail events is of great importance in financial risk management. By employing the method of peak-over-threshold (POT) to identify the financial extremes, we perform a recurrence interval analysis (RIA) on these extremes. We find that the waiting time between consecutive extremes (recurrence interval) follow a $q$-exponential distribution and the sizes of extremes above the thresholds (exceeding size) conform to a generalized Pareto distribution. We also find that there is a significant correlation between recurrence intervals and exceeding sizes. We thus model the joint distribution of recurrence intervals and exceeding sizes through connecting the two corresponding marginal distributions with the Frank and AMH copula functions, and apply this joint distribution to estimate the hazard probability to observe another extreme in $Delta t$ time since the last extreme happened $t$ time ago. Furthermore, an extreme predicting model based on RIA-EVT-Copula is proposed by applying a decision-making algorithm on the hazard probability. Both in-sample and out-of-sample tests reveal that this new extreme forecasting framework has better performance in prediction comparing with the forecasting model based on the hazard probability only estimated from the distribution of recurrence intervals. Our results not only shed a new light on understanding the occurring pattern of extremes in financial markets, but also improve the accuracy to predict financial extremes for risk management.
In this paper we present a novel approach for firm default probability estimation. The methodology is based on multivariate contingent claim analysis and pair copula constructions. For each considered firm, balance sheet data are used to assess the a
When estimating the risk of a financial position with empirical data or Monte Carlo simulations via a tail-dependent law invariant risk measure such as the Conditional Value-at-Risk (CVaR), it is important to ensure the robustness of the statistical
Tail dependence refers to clustering of extreme events. In the context of financial risk management, the clustering of high-severity risks has a devastating effect on the well-being of firms and is thus of pivotal importance in risk analysis.When it
We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress
In this paper, we investigate risk measures such as value at risk (VaR) and the conditional tail expectation (CTE) of the extreme (maximum and minimum) and the aggregate (total) of two dependent risks. In finance, insurance and the other fields, when