ﻻ يوجد ملخص باللغة العربية
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstams interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multi-string processes with maximal helicity violation have much simplified amplitudes. We also specialize to general four string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group $O(d+1,1)$. The exceptions are the bosonic string whose Lorentz group is $O(25,1)$ and the protostring whose Lorentz group is $O(1,1)$. The models in between only enjoy an $O(1,1)times O(d)$ spacetime symmetry.
In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined
We emphasize that scattering amplitudes of a wide class of models to any order in the coupling are constructible by on-shell tree subamplitudes. This follows from the Feynman-tree theorem combined with BCFW on-shell recursion relations. In contrast t
Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ
We present a general framework with which the Schwarzschild-Tangherlini metric of a point particle in arbitrary dimensions can be derived from a scattering amplitude to all orders in the gravitational constant, $G_N$, in covariant gauge (i.e. $R_xi$-
We compute the leading-color contribution to four-particle scattering amplitude in four-dimensional conformal fishnet theory that arises as a special limit of $gamma$-deformed $mathcal N=4$ SYM. We show that the single-trace partial amplitude is prot