ﻻ يوجد ملخص باللغة العربية
We present a general framework with which the Schwarzschild-Tangherlini metric of a point particle in arbitrary dimensions can be derived from a scattering amplitude to all orders in the gravitational constant, $G_N$, in covariant gauge (i.e. $R_xi$-gauge) with a generalized de Donder-type gauge function, $G_sigma$. The metric is independent of the covariant gauge parameter $xi$ and obeys the classical gauge condition $G_sigma=0$. We compute the metric with the generalized gauge choice explicitly to second order in $G_N$ where gravitational self-interactions become important and these results verify the general framework to one-loop order. Interestingly, after generalizing to arbitrary dimension, a logarithmic dependence on the radial coordinate appears in space-time dimension $D=5$.
We present the analytic form of the two-loop four-graviton scattering amplitudes in Einstein gravity. To remove ultraviolet divergences we include counterterms quadratic and cubic in the Riemann curvature tensor. The two-loop numerical unitarity appr
Amplitude methods have proven to be a promising technique to perform Post-Minkowskian calculations used as inputs to construct gravitational waveforms. In this paper, we show how these methods can be extended beyond the standard calculations in Gener
We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge red
Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the P