ﻻ يوجد ملخص باللغة العربية
We prove that a random group in the triangular density model has, for density larger than 1/3, fixed point properties for actions on $L^p$-spaces (affine isometric, and more generally $(2-2epsilon)^{1/2p}$-uniformly Lipschitz) with $p$ varying in an interval increasing with the set of generators. In the same model, we establish a double inequality between the maximal $p$ for which $L^p$-fixed point properties hold and the conformal dimension of the boundary. In the Gromov density model, we prove that for every $p_0 in [2, infty)$ for a sufficiently large number of generators and for any density larger than 1/3, a random group satisfies the fixed point property for affine actions on $L^p$-spaces that are $(2-2epsilon)^{1/2p}$-uniformly Lipschitz, and this for every $pin [2,p_0]$. To accomplish these goals we find new bounds on the first eigenvalue of the p-Laplacian on random graphs, using methods adapted from Kahn and Szemeredis approach to the 2-Laplacian. These in turn lead to fixed point properties using arguments of Bourdon and Gromov, which extend to $L^p$-spaces previous results for Kazhdans Property (T) established by Zuk and Ballmann-Swiatkowski.
Random factor graphs provide a powerful framework for the study of inference problems such as decoding problems or the stochastic block model. Information-theoretically the key quantity of interest is the mutual information between the observed facto
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea
We show that for a fixed k, Gromov random groups with any positive density have no non-trivial degree-k representations over any field, a.a.s. This is especially interesting in light of the results of Agol, Ollivier and Wise that when the density is
We introduce a model for random groups in varieties of $n$-periodic groups as $n$-periodic quotients of triangular random groups. We show that for an explicit $d_{mathrm{crit}}in(1/3,1/2)$, for densities $din(1/3,d_{mathrm{crit}})$ and for $n$ large
We study a random group G in the Gromov density model and its Cayley complex X. For density < 5/24 we define walls in X that give rise to a nontrivial action of G on a CAT(0) cube complex. This extends a result of Ollivier and Wise, whose walls could