ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear representations of random groups

91   0   0.0 ( 0 )
 نشر من قبل Gady Kozma
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that for a fixed k, Gromov random groups with any positive density have no non-trivial degree-k representations over any field, a.a.s. This is especially interesting in light of the results of Agol, Ollivier and Wise that when the density is less than 1/6 such groups have a faithful linear representation over the rationals, a.a.s.



قيم البحث

اقرأ أيضاً

The minimal base size $b(G)$ for a permutation group $G$, is a widely studied topic in the permutation group theory. Z. Halasi and K. Podoski proved that $b(G)leq 2$ for coprime linear groups. Motivated by this result and the probabilistic method use d by T. C. Burness, M. W. Liebeck and A. Shalev, it was asked by L. Pyber that for coprime linear groups $Gleq GL(V)$, whether there exists a constant $c$ such that the probability of that a random $c$-tuple is a base for $G$ tends to 1 as $|V|toinfty$. While the answer to this question is negative in general, it is positive under the additional assumption that $G$ is even primitive as a linear group. In this paper, we show that almost all $11$-tuples are bases for coprime primitive linear groups.
We prove a generalization of a conjecture of C. Marion on generation properties of finite groups of Lie type, by considering geometric properties of an appropriate representation variety and associated tangent spaces.
We introduce and study a new class of representations of surface groups into Lie groups of Hermitian type, called weakly maximal representations. They are defined in terms of invariants in bounded cohomology and extend considerably the scope of maxim al representations. We prove that weakly maximal representations are discrete and injective and describe the structure of the Zariski closure of the image. An interesting feature of these representations is that they admit an elementary topological characterization in terms of bi-invariant orderings. In particular if the target group is Hermitian of tube type, the ordering can be described in terms of the causal structure on the Shilov boundary.
This is an expository book on unitary representations of topological groups, and of several dual spaces, which are spaces of such representations up to some equivalence. The most important notions are defined for topological groups, but a special att ention is paid to the case of discrete groups. The unitary dual of a group $G$ is the space of equivalence classes of its irreducible unitary representations; it is both a topological space and a Borel space. The primitive dual is the space of weak equivalence classes of unitary irreducible representations. The normal quasi-dual is the space of quasi-equivalence classes of traceable factor representations; it is parametrized by characters, which can be finite or infinite. The theory is systematically illustrated by a series of specific examples: Heisenberg groups, affine groups of infinite fields, solvable Baumslag-Solitar groups, lamplighter groups, and general linear groups. Operator algebras play an important role in the exposition, in particular the von Neumann algebras associated to a unitary representation and C*-algebras associated to a locally compact group.
We introduce a model for random groups in varieties of $n$-periodic groups as $n$-periodic quotients of triangular random groups. We show that for an explicit $d_{mathrm{crit}}in(1/3,1/2)$, for densities $din(1/3,d_{mathrm{crit}})$ and for $n$ large enough, the model produces emph{infinite} $n$-periodic groups. As an application, we obtain, for every fixed large enough $n$, for every $pin (1,infty)$ an infinite $n$-periodic group with fixed points for all isometric actions on $L^p$-spaces. Our main contribution is to show that certain random triangular groups are uniformly acylindrically hyperbolic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا