ترغب بنشر مسار تعليمي؟ اضغط هنا

Conjugacy properties of time-evolving Dirichlet and gamma random measures

191   0   0.0 ( 0 )
 نشر من قبل Matteo Ruggiero
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend classic characterisations of posterior distributions under Dirichlet process and gamma random measures priors to a dynamic framework. We consider the problem of learning, from indirect observations, two families of time-dependent processes of interest in Bayesian nonparametrics: the first is a dependent Dirichlet process driven by a Fleming-Viot model, and the data are random samples from the process state at discrete times; the second is a collection of dependent gamma random measures driven by a Dawson-Watanabe model, and the data are collected according to a Poisson point process with intensity given by the process state at discrete times. Both driving processes are diffusions taking values in the space of discrete measures whose support varies with time, and are stationary and reversible with respect to Dirichlet and gamma priors respectively. A common methodology is developed to obtain in closed form the time-marginal posteriors given past and present data. These are shown to belong to classes of finite mixtures of Dirichlet processes and gamma random measures for the two models respectively, yielding conjugacy of these classes to the type of data we consider. We provide explicit results on the parameters of the mixture components and on the mixing weights, which are time-varying and drive the mixtures towards the respective priors in absence of further data. Explicit algorithms are provided to recursively compute the parameters of the mixtures. Our results are based on the projective properties of the signals and on certain duality properties of their projections.

قيم البحث

اقرأ أيضاً

Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d ge 2$ random measures models the distribution of a group of exchangeable observations, while their dep endence structure regulates the borrowing of information across different groups. Recent work has quantified the dependence between random measures in terms of Wasserstein distance from the maximally dependent scenario when $d=2$. By solving an intriguing max-min problem we are now able to define a Wasserstein index of dependence $I_mathcal{W}$ with the following properties: (i) it simultaneously quantifies the dependence of $d ge 2$ random measures; (ii) it takes values in [0,1]; (iii) it attains the extreme values ${0,1}$ under independence and complete dependence, respectively; (iv) since it is defined in terms of the underlying Levy measures, it is possible to evaluate it numerically in many Bayesian nonparametric models for partially exchangeable data.
224 - Piero Barone 2010
Pencils of Hankel matrices whose elements have a joint Gaussian distribution with nonzero mean and not identical covariance are considered. An approximation to the distribution of the squared modulus of their determinant is computed which allows to g et a closed form approximation of the condensed density of the generalized eigenvalues of the pencils. Implications of this result for solving several moments problems are discussed and some numerical examples are provided.
87 - Olivier Marchal 2017
We obtain the optimal proxy variance for the sub-Gaussianity of Beta distribution, thus proving upper bounds recently conjectured by Elder (2016). We provide different proof techniques for the symmetrical (around its mean) case and the non-symmetrica l case. The technique in the latter case relies on studying the ordinary differential equation satisfied by the Beta moment-generating function known as the confluent hypergeometric function. As a consequence, we derive the optimal proxy variance for the Dirichlet distribution, which is apparently a novel result. We also provide a new proof of the optimal proxy variance for the Bernoulli distribution, and discuss in this context the proxy variance relation to log-Sobolev inequalities and transport inequalities.
We study the randomness properties of reals with respect to arbitrary probability measures on Cantor space. We show that every non-computable real is non-trivially random with respect to some measure. The probability measures constructed in the proof may have atoms. If one rules out the existence of atoms, i.e. considers only continuous measures, it turns out that every non-hyperarithmetical real is random for a continuous measure. On the other hand, examples of reals not random for any continuous measure can be found throughout the hyperarithmetical Turing degrees.
We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomia l and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا