ﻻ يوجد ملخص باللغة العربية
We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomial and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.
We consider a re-sampling scheme for estimation of the population parameters in the mixed effects nonlinear regression models of the type use for example in clinical pharmacokinetics, say. We provide an estimation procedure which {it recycles}, via r
In this paper, we are basically discussing on a class of Baranchik type shrinkage estimators of the vector parameter in a location model, with errors belonging to a sub-class of elliptically contoured distributions. We derive conditions under Schwart
Consider a Poisson point process with unknown support boundary curve $g$, which forms a prototype of an irregular statistical model. We address the problem of estimating non-linear functionals of the form $int Phi(g(x)),dx$. Following a nonparametric
We study a problem of estimation of smooth functionals of parameter $theta $ of Gaussian shift model $$ X=theta +xi, theta in E, $$ where $E$ is a separable Banach space and $X$ is an observation of unknown vector $theta$ in Gaussian noise $xi$ with
We study the problem of estimating the mean of a multivariatedistribution based on independent samples. The main result is the proof of existence of an estimator with a non-asymptotic sub-Gaussian performance for all distributions satisfying some mild moment assumptions.