ترغب بنشر مسار تعليمي؟ اضغط هنا

On the condensed density of the generalized eigenvalues of pencils of Hankel Gaussian random matrices and applications

294   0   0.0 ( 0 )
 نشر من قبل Piero Barone
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Piero Barone




اسأل ChatGPT حول البحث

Pencils of Hankel matrices whose elements have a joint Gaussian distribution with nonzero mean and not identical covariance are considered. An approximation to the distribution of the squared modulus of their determinant is computed which allows to get a closed form approximation of the condensed density of the generalized eigenvalues of the pencils. Implications of this result for solving several moments problems are discussed and some numerical examples are provided.



قيم البحث

اقرأ أيضاً

Consider a standard white Wishart matrix with parameters $n$ and $p$. Motivated by applications in high-dimensional statistics and signal processing, we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the $m times m$ pr incipal minors, under the asymptotic regime that $n,p,m$ go to infinity. Asymptotic results concerning extreme eigenvalues of principal minors of real Wigner matrices are also obtained. In addition, we discuss an application of the theoretical results to the construction of compressed sensing matrices, which provides insights to compressed sensing in signal processing and high dimensional linear regression in statistics.
We present some new results on the joint distribution of an arbitrary subset of the ordered eigenvalues of complex Wishart, double Wishart, and Gaussian hermitian random matrices of finite dimensions, using a tensor pseudo-determinant operator. Speci fically, we derive compact expressions for the joint probability distribution function of the eigenvalues and the expectation of functions of the eigenvalues, including joint moments, for the case of both ordered and unordered eigenvalues.
118 - Elizabeth Meckes 2021
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
We extend classic characterisations of posterior distributions under Dirichlet process and gamma random measures priors to a dynamic framework. We consider the problem of learning, from indirect observations, two families of time-dependent processes of interest in Bayesian nonparametrics: the first is a dependent Dirichlet process driven by a Fleming-Viot model, and the data are random samples from the process state at discrete times; the second is a collection of dependent gamma random measures driven by a Dawson-Watanabe model, and the data are collected according to a Poisson point process with intensity given by the process state at discrete times. Both driving processes are diffusions taking values in the space of discrete measures whose support varies with time, and are stationary and reversible with respect to Dirichlet and gamma priors respectively. A common methodology is developed to obtain in closed form the time-marginal posteriors given past and present data. These are shown to belong to classes of finite mixtures of Dirichlet processes and gamma random measures for the two models respectively, yielding conjugacy of these classes to the type of data we consider. We provide explicit results on the parameters of the mixture components and on the mixing weights, which are time-varying and drive the mixtures towards the respective priors in absence of further data. Explicit algorithms are provided to recursively compute the parameters of the mixtures. Our results are based on the projective properties of the signals and on certain duality properties of their projections.
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov--Smirnov-type goodness-of-fit test proposed by Balding et al. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford--Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton--Watson related processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا