ترغب بنشر مسار تعليمي؟ اضغط هنا

Preconditioned Steepest Descent Methods for some Nonlinear Elliptic Equations Involving p-Laplacian Terms

82   0   0.0 ( 0 )
 نشر من قبل Wenqiang Feng
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in generic Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general the theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems -- including thin film epitaxy with slope selection and the square phase field crystal model -- are carried out to verify the efficiency of the scheme.



قيم البحث

اقرأ أيضاً

We study a nonlinear equation with an elliptic operator having degenerate coercivity. We prove the existence of a W^{1,1}_0 solution which is distributional or entropic, according to the growth assumptions on a lower order term in divergence form.
We develop a theoretical foundation for the application of Nesterovs accelerated gradient descent method (AGD) to the approximation of solutions of a wide class of partial differential equations (PDEs). This is achieved by proving the existence of an invariant set and exponential convergence rates when its preconditioned version (PAGD) is applied to minimize locally Lipschitz smooth, strongly convex objective functionals. We introduce a second-order ordinary differential equation (ODE) with a preconditioner built-in and show that PAGD is an explicit time-discretization of this ODE, which requires a natural time step restriction for energy stability. At the continuous time level, we show an exponential convergence of the ODE solution to its steady state using a simple energy argument. At the discrete level, assuming the aforementioned step size restriction, the existence of an invariant set is proved and a matching exponential rate of convergence of the PAGD scheme is derived by mimicking the energy argument and the convergence at the continuous level. Applications of the PAGD method to numerical PDEs are demonstrated with certain nonlinear elliptic PDEs using pseudo-spectral methods for spatial discretization, and several numerical experiments are conducted. The results confirm the global geometric and mesh size-independent convergence of the PAGD method, with an accelerated rate that is improved over the preconditioned gradient descent (PGD) method.
296 - Bin Guo , Wenjie Gao 2013
The authors of this paper study singular phenomena(vanishing and blowing-up in finite time) of solutions to the homogeneous $hbox{Dirichlet}$ boundary value problem of nonlinear diffusion equations involving $p(x)$-hbox{Laplacian} operator and a nonl inear source. The authors discuss how the value of the variable exponent $p(x)$ and initial energy(data) affect the properties of solutions. At the same time, we obtain the critical extinction and blow-up exponents of solutions.
In this paper we prove the validity of Gibbons conjecture for the quasilinear elliptic equation $ -Delta_p u = f(u) $ on $mathbb{R}^N.$ The result holds true for $(2N+2)/(N+2) < p < 2$ and for a very general class of nonlinearity $f$.
152 - H.Chen , H. Hajaiej 2016
In this paper, we study existence of boundary blow-up solutions for elliptic equations involving regional fractional Laplacian. We also discuss the optimality of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا