ترغب بنشر مسار تعليمي؟ اضغط هنا

Preconditioned accelerated gradient descent methods for locally Lipschitz smooth objectives with applications to the solution of nonlinear PDEs

117   0   0.0 ( 0 )
 نشر من قبل Abner Salgado
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theoretical foundation for the application of Nesterovs accelerated gradient descent method (AGD) to the approximation of solutions of a wide class of partial differential equations (PDEs). This is achieved by proving the existence of an invariant set and exponential convergence rates when its preconditioned version (PAGD) is applied to minimize locally Lipschitz smooth, strongly convex objective functionals. We introduce a second-order ordinary differential equation (ODE) with a preconditioner built-in and show that PAGD is an explicit time-discretization of this ODE, which requires a natural time step restriction for energy stability. At the continuous time level, we show an exponential convergence of the ODE solution to its steady state using a simple energy argument. At the discrete level, assuming the aforementioned step size restriction, the existence of an invariant set is proved and a matching exponential rate of convergence of the PAGD scheme is derived by mimicking the energy argument and the convergence at the continuous level. Applications of the PAGD method to numerical PDEs are demonstrated with certain nonlinear elliptic PDEs using pseudo-spectral methods for spatial discretization, and several numerical experiments are conducted. The results confirm the global geometric and mesh size-independent convergence of the PAGD method, with an accelerated rate that is improved over the preconditioned gradient descent (PGD) method.



قيم البحث

اقرأ أيضاً

In this article, we construct and analyse explicit numerical splitting methods for a class of semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed to grow polynomially and satisfies a global one-sided L ipschitz condition. The methods are proved to be mean-square convergent of order 1 and to preserve important structural properties of the SDE. In particular, first, they are hypoelliptic in every iteration step. Second, they are geometrically ergodic and have asymptotically bounded second moments. Third, they preserve oscillatory dynamics, such as amplitudes, frequencies and phases of oscillations, even for large time steps. Our results are illustrated on the stochastic FitzHugh-Nagumo model and compared with known mean-square convergent tamed/truncated variants of the Euler-Maruyama method. The capability of the proposed splitting methods to preserve the aforementioned properties makes them applicable within different statistical inference procedures. In contrast, known Euler-Maruyama type methods commonly fail in preserving such properties, yielding ill-conditioned likelihood-based estimation tools or computationally infeasible simulation-based inference algorithms.
78 - Hanyu Li , Yajie Yu 2021
This work considers the problem of computing the CANDECOMP/PARAFAC (CP) decomposition of large tensors. One popular way is to translate the problem into a sequence of overdetermined least squares subproblems with Khatri-Rao product (KRP) structure. I n this work, for tensor with different levels of importance in each fiber, combining stochastic optimization with randomized sampling, we present a mini-batch stochastic gradient descent algorithm with importance sampling for those special least squares subproblems. Four different sampling strategies are provided. They can avoid forming the full KRP or corresponding probabilities and sample the desired fibers from the original tensor directly. Moreover, a more practical algorithm with adaptive step size is also given. For the proposed algorithms, we present their convergence properties and numerical performance. The results on synthetic data show that our algorithms outperform the existing algorithms in terms of accuracy or the number of iterations.
83 - Jongho Park 2019
This paper gives a unified convergence analysis of additive Schwarz methods for general convex optimization problems. Resembling to the fact that additive Schwarz methods for linear problems are preconditioned Richardson methods, we prove that additi ve Schwarz methods for general convex optimization are in fact gradient methods. Then an abstract framework for convergence analysis of additive Schwarz methods is proposed. The proposed framework applied to linear elliptic problems agrees with the classical theory. We present applications of the proposed framework to various interesting convex optimization problems such as nonlinear elliptic problems, nonsmooth problems, and nonsharp problems.
We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equation s are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in generic Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general the theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems -- including thin film epitaxy with slope selection and the square phase field crystal model -- are carried out to verify the efficiency of the scheme.
131 - Xiaojie Wang 2020
A novel class of implicit Milstein type methods is devised and analyzed in the present work for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $theta , eta in [0, 1]$ into both the drift and diffusion parts, the new schemes can be viewed as a kind of double implicit methods, which also work for non-commutative noise driven SDEs. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $theta in [tfrac12, 1]$, solving general SDEs in various circumstances. As applications, some of the proposed schemes are also applied to solve two scalar SDE models arising in mathematical finance and evolving in the positive domain $(0, infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ theta = eta = 1 $) is utilized to approximate the Heston $tfrac32$-volatility model and the semi-implicit Milstein method ($theta =1, eta = 0$) is used to solve the Ait-Sahalia interest rate model. With the aid of the previously obtained error bounds, we reveal a mean-square convergence rate of order one of the positivity preserving schemes for the first time under more relaxed conditions, compared with existing relevant results for first order schemes in the literature. Numerical examples are finally reported to confirm the previous findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا