ﻻ يوجد ملخص باللغة العربية
The authors of this paper study singular phenomena(vanishing and blowing-up in finite time) of solutions to the homogeneous $hbox{Dirichlet}$ boundary value problem of nonlinear diffusion equations involving $p(x)$-hbox{Laplacian} operator and a nonlinear source. The authors discuss how the value of the variable exponent $p(x)$ and initial energy(data) affect the properties of solutions. At the same time, we obtain the critical extinction and blow-up exponents of solutions.
In this paper we prove the validity of Gibbons conjecture for the quasilinear elliptic equation $ -Delta_p u = f(u) $ on $mathbb{R}^N.$ The result holds true for $(2N+2)/(N+2) < p < 2$ and for a very general class of nonlinearity $f$.
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end
In this paper we consider a Dirichlet problem driven by an anisotropic $(p,q)$-differential operator and a parametric reaction having the competing effects of a singular term and of a superlinear perturbation. We prove a bifurcation-type theorem desc
In this paper, we study existence of boundary blow-up solutions for elliptic equations involving regional fractional Laplacian. We also discuss the optimality of our results.
We establish the existence and multiplicity of positive solutions to the problems involving the fractional Laplacian: begin{equation*} left{begin{array}{lll} &(-Delta)^{s}u=lambda u^{p}+f(u),,,u>0 quad &mbox{in},,Omega, &u=0quad &mbox{in},,mathbb{R}^