ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting a many-body mobility edge with quantum quenches

91   0   0.0 ( 0 )
 نشر من قبل Piero Naldesi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from extended/ergodic (exhibiting extensive entanglement entropies and fluctuations) to localized (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using quantum-quench spectroscopy, namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

قيم البحث

اقرأ أيضاً

Many interesting experimental systems, such as cavity QED or central spin models, involve global coupling to a single harmonic mode. Out-of-equilibrium, it remains unclear under what conditions localized phases survive such global coupling. We study energy-dependent localization in the disordered Ising model with transverse and longitudinal fields coupled globally to a $d$-level system (qudit). Strikingly, we discover an inverted mobility edge, where high energy states are localized while low energy states are delocalized. Our results are supported by shift-and-invert eigenstate targeting and Krylov time evolution up to $L=13$ and $18$ respectively. We argue for a critical energy of the localization phase transition which scales as $E_c propto L^{1/2}$, consistent with finite size numerics. We also show evidence for a reentrant MBL phase at even lower energies despite the presence of strong effects of the central mode in this regime. Similar results should occur in the central spin-$S$ problem at large $S$ and in certain models of cavity QED.
Thermalization of random-field Heisenberg spin chain is probed by time evolution of density correlation functions. Studying the impacts of average energies of initial product states on dynamics of the system, we provide arguments in favor of the exis tence of a mobility edge in the large system-size limit.
364 - Xingbo Wei , Rubem Mondaini , 2020
Whether the many-body mobility edges can exist in a one-dimensional interacting quantum system is a controversial problem, mainly hampered by the limited system sizes amenable to numerical simulations. We investigate the transition from chaos to loca lization by constructing a combined random matrix, which has two extremes, one of Gaussian orthogonal ensemble and the other of Poisson statistics, drawn from different distributions. We find that by fixing a scaling parameter, the mobility edges can exist while increasing the matrix dimension $Drightarrowinfty$, depending on the distribution of matrix elements of the diagonal uncorrelated matrix. By applying those results to a specific one-dimensional isolated quantum system of random diagonal elements, we confirm the existence of a many-body mobility edge, connecting it with results on the onset of level repulsion extracted from ensembles of mixed random matrices.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for incr easing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا