ﻻ يوجد ملخص باللغة العربية
Whether the many-body mobility edges can exist in a one-dimensional interacting quantum system is a controversial problem, mainly hampered by the limited system sizes amenable to numerical simulations. We investigate the transition from chaos to localization by constructing a combined random matrix, which has two extremes, one of Gaussian orthogonal ensemble and the other of Poisson statistics, drawn from different distributions. We find that by fixing a scaling parameter, the mobility edges can exist while increasing the matrix dimension $Drightarrowinfty$, depending on the distribution of matrix elements of the diagonal uncorrelated matrix. By applying those results to a specific one-dimensional isolated quantum system of random diagonal elements, we confirm the existence of a many-body mobility edge, connecting it with results on the onset of level repulsion extracted from ensembles of mixed random matrices.
We uncover a new non-ergodic phase, distinct from the many-body localized (MBL) phase, in a disordered two-leg ladder of interacting hardcore bosons. The dynamics of this emergent phase, which has no single-particle analog and exists only for strong
Many interesting experimental systems, such as cavity QED or central spin models, involve global coupling to a single harmonic mode. Out-of-equilibrium, it remains unclear under what conditions localized phases survive such global coupling. We study
We analyze many body localization (MBL) in an interacting one-dimensional system with a deterministic aperiodic potential. Below the threshold value of the potential $h < h_c$, the non-interacting system has single particle mobility edges at $pm E_c$
Thermalization of random-field Heisenberg spin chain is probed by time evolution of density correlation functions. Studying the impacts of average energies of initial product states on dynamics of the system, we provide arguments in favor of the exis
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exi