ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Context with User Embeddings for Sarcasm Detection in Social Media

82   0   0.0 ( 0 )
 نشر من قبل Silvio Amir
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a deep neural network for automated sarcasm detection. Recent work has emphasized the need for models to capitalize on contextual features, beyond lexical and syntactic cues present in utterances. For example, different speakers will tend to employ sarcasm regarding different subjects and, thus, sarcasm detection models ought to encode such speaker information. Current methods have achieved this by way of laborious feature engineering. By contrast, we propose to automatically learn and then exploit user embeddings, to be used in concert with lexical signals to recognize sarcasm. Our approach does not require elaborate feature engineering (and concomitant data scraping); fitting user embeddings requires only the text from their previous posts. The experimental results show that our model outperforms a state-of-the-art approach leveraging an extensive set of carefully crafted features.

قيم البحث

اقرأ أيضاً

Mental illnesses adversely affect a significant proportion of the population worldwide. However, the methods traditionally used for estimating and characterizing the prevalence of mental health conditions are time-consuming and expensive. Consequentl y, best-available estimates concerning the prevalence of mental health conditions are often years out of date. Automated approaches to supplement these survey methods with broad, aggregated information derived from social media content provides a potential means for near real-time estimates at scale. These may, in turn, provide grist for supporting, evaluating and iteratively improving upon public health programs and interventions. We propose a novel model for automated mental health status quantification that incorporates user embeddings. This builds upon recent work exploring representation learning methods that induce embeddings by leveraging social media post histories. Such embeddings capture latent characteristics of individuals (e.g., political leanings) and encode a soft notion of homophily. In this paper, we investigate whether user embeddings learned from twitter post histories encode information that correlates with mental health statuses. To this end, we estimated user embeddings for a set of users known to be affected by depression and post-traumatic stress disorder (PTSD), and for a set of demographically matched `control users. We then evaluated these embeddings with respect to: (i) their ability to capture homophilic relations with respect to mental health status; and (ii) the performance of downstream mental health prediction models based on these features. Our experimental results demonstrate that the user embeddings capture similarities between users with respect to mental conditions, and are predictive of mental health.
115 - Hsin-Yu Chen , Cheng-Te Li 2020
In the computational detection of cyberbullying, existing work largely focused on building generic classifiers that rely exclusively on text analysis of social media sessions. Despite their empirical success, we argue that a critical missing piece is the model explainability, i.e., why a particular piece of media session is detected as cyberbullying. In this paper, therefore, we propose a novel deep model, HEterogeneous Neural Interaction Networks (HENIN), for explainable cyberbullying detection. HENIN contains the following components: a comment encoder, a post-comment co-attention sub-network, and session-session and post-post interaction extractors. Extensive experiments conducted on real datasets exhibit not only the promising performance of HENIN, but also highlight evidential comments so that one can understand why a media session is identified as cyberbullying.
73 - Suyu Ge , Lu Cheng , Huan Liu 2020
Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study. Our code is released to public.
The rapid development of social media changes the lifestyle of people and simultaneously provides an ideal place for publishing and disseminating rumors, which severely exacerbates social panic and triggers a crisis of social trust. Early content-bas ed methods focused on finding clues from the text and user profiles for rumor detection. Recent studies combine the stances of users comments with news content to capture the difference between true and false rumors. Although the users stance is effective for rumor detection, the manual labeling process is time-consuming and labor-intensive, which limits the application of utilizing it to facilitate rumor detection. In this paper, we first finetune a pre-trained BERT model on a small labeled dataset and leverage this model to annotate weak stance labels for users comment data to overcome the problem mentioned above. Then, we propose a novel Stance-aware Reinforcement Learning Framework (SRLF) to select high-quality labeled stance data for model training and rumor detection. Both the stance selection and rumor detection tasks are optimized simultaneously to promote both tasks mutually. We conduct experiments on two commonly used real-world datasets. The experimental results demonstrate that our framework outperforms the state-of-the-art models significantly, which confirms the effectiveness of the proposed framework.
Most hate speech detection research focuses on a single language, generally English, which limits their generalisability to other languages. In this paper we investigate the cross-lingual hate speech detection task, tackling the problem by adapting t he hate speech resources from one language to another. We propose a cross-lingual capsule network learning model coupled with extra domain-specific lexical semantics for hate speech (CCNL-Ex). Our model achieves state-of-the-art performance on benchmark datasets from AMI@Evalita2018 and AMI@Ibereval2018 involving three languages: English, Spanish and Italian, outperforming state-of-the-art baselines on all six language pairs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا