ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-lingual Capsule Network for Hate Speech Detection in Social Media

85   0   0.0 ( 0 )
 نشر من قبل Aiqi Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most hate speech detection research focuses on a single language, generally English, which limits their generalisability to other languages. In this paper we investigate the cross-lingual hate speech detection task, tackling the problem by adapting the hate speech resources from one language to another. We propose a cross-lingual capsule network learning model coupled with extra domain-specific lexical semantics for hate speech (CCNL-Ex). Our model achieves state-of-the-art performance on benchmark datasets from AMI@Evalita2018 and AMI@Ibereval2018 involving three languages: English, Spanish and Italian, outperforming state-of-the-art baselines on all six language pairs.



قيم البحث

اقرأ أيضاً

Hate Speech has become a major content moderation issue for online social media platforms. Given the volume and velocity of online content production, it is impossible to manually moderate hate speech related content on any platform. In this paper we utilize a multi-task and multi-lingual approach based on recently proposed Transformer Neural Networks to solve three sub-tasks for hate speech. These sub-tasks were part of the 2019 shared task on hate speech and offensive content (HASOC) identification in Indo-European languages. We expand on our submission to that competition by utilizing multi-task models which are trained using three approaches, a) multi-task learning with separate task heads, b) back-translation, and c) multi-lingual training. Finally, we investigate the performance of various models and identify instances where the Transformer based models perform differently and better. We show that it is possible to to utilize different combined approaches to obtain models that can generalize easily on different languages and tasks, while trading off slight accuracy (in some cases) for a much reduced inference time compute cost. We open source an updated version of our HASOC 2019 code with the new improvements at https://github.com/socialmediaie/MTML_HateSpeech.
Hate speech and profanity detection suffer from data sparsity, especially for languages other than English, due to the subjective nature of the tasks and the resulting annotation incompatibility of existing corpora. In this study, we identify profane subspaces in word and sentence representations and explore their generalization capability on a variety of similar and distant target tasks in a zero-shot setting. This is done monolingually (German) and cross-lingually to closely-related (English), distantly-related (French) and non-related (Arabic) tasks. We observe that, on both similar and distant target tasks and across all languages, the subspace-based representations transfer more effectively than standard BERT representations in the zero-shot setting, with improvements between F1 +10.9 and F1 +42.9 over the baselines across all tested monolingual and cross-lingual scenarios.
Islamophobic hate speech on social media inflicts considerable harm on both targeted individuals and wider society, and also risks reputational damage for the host platforms. Accordingly, there is a pressing need for robust tools to detect and classi fy Islamophobic hate speech at scale. Previous research has largely approached the detection of Islamophobic hate speech on social media as a binary task. However, the varied nature of Islamophobia means that this is often inappropriate for both theoretically-informed social science and effectively monitoring social media. Drawing on in-depth conceptual work we build a multi-class classifier which distinguishes between non-Islamophobic, weak Islamophobic and strong Islamophobic content. Accuracy is 77.6% and balanced accuracy is 83%. We apply the classifier to a dataset of 109,488 tweets produced by far right Twitter accounts during 2017. Whilst most tweets are not Islamophobic, weak Islamophobia is considerably more prevalent (36,963 tweets) than strong (14,895 tweets). Our main input feature is a gloVe word embeddings model trained on a newly collected corpus of 140 million tweets. It outperforms a generic word embeddings model by 5.9 percentage points, demonstrating the importan4ce of context. Unexpectedly, we also find that a one-against-one multi class SVM outperforms a deep learning algorithm.
In recent years, Hate Speech Detection has become one of the interesting fields in natural language processing or computational linguistics. In this paper, we present the description of our system to solve this problem at the VLSP shared task 2019: H ate Speech Detection on Social Networks with the corpus which contains 20,345 human-labeled comments/posts for training and 5,086 for public-testing. We implement a deep learning method based on the Bi-GRU-LSTM-CNN classifier into this task. Our result in this task is 70.576% of F1-score, ranking the 5th of performance on public-test set.
Detecting hate speech, especially in low-resource languages, is a non-trivial challenge. To tackle this, we developed a tailored architecture based on frozen, pre-trained Transformers to examine cross-lingual zero-shot and few-shot learning, in addit ion to uni-lingual learning, on the HatEval challenge data set. With our novel attention-based classification block AXEL, we demonstrate highly competitive results on the English and Spanish subsets. We also re-sample the English subset, enabling additional, meaningful comparisons in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا