ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear piezoelectricity in poly(vinylidenefluoride-co-trifluoroethylene): full piezotensor coefficients by molecular modeling, biaxial transverse response, and use in suspended energy-harvesting nanostructures

80   0   0.0 ( 0 )
 نشر من قبل Dario Pisignano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Luana Persano




اسأل ChatGPT حول البحث

The intrinsic flexible character of polymeric materials also causes remarkable strain deformations along directions perpendicular to the applied stress. Here the biaxial response in the shear piezoelectricity of polyvinylidenefluoride copolymers is analyzed and their full piezoelectric tensors are provided. The microscopic shear is exploited in single suspended nanowires bent by localized loading to couple flexural deformation and transverse piezoelectric response.

قيم البحث

اقرأ أيضاً

42 - Luana Persano 2013
Multifunctional capability, flexible design, rugged lightweight construction, and self-powered operation are desired attributes for electronics that directly interface with the human body or with advanced robotic systems. For these and related applic ations, piezoelectric materials, in forms that offer the ability to bend and stretch, are attractive for pressure/force sensors and mechanical energy harvesters. In this paper we introduce a large area, flexible piezoelectric material that consists of sheets of electrospun fibers of the polymer poly[(vinylidenefluoride-co-trifluoroethylene]. The flow and mechanical conditions associated with the spinning process yield free-standing, three-dimensional architectures of aligned arrangements of such fibers, in which the polymer chains adopt strongly preferential orientations. The resulting material offers exceptional piezoelectric characteristics, to enable, as an example, ultra-high sensitivity for measuring pressure, even at exceptionally small values (0.1 Pa). Quantitative analysis provides detailed insights into the pressure sensing mechanisms, and engineering design rules. Applications range from self-powered micro-mechanical elements, to self-balancing robots and sensitive impact detectors.
The septuple-atomic-layer $mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of $mathrm{VSi_2P_4}$, and it spans a wide range of properties upon the increasing strain from ferromagnetic metal (FMM) to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS $mathrm{VSi_2P_4}$ with strain range of 0% to 4%. The calculated piezoelectric strain coefficients $d_{11}$ for 1%, 2% and 3% strains are 4.61 pm/V, 4.94 pm/V and 5.27 pm/V, respectively, which are greater than or close to a typical value of 5 pm/V for bulk piezoelectric materials. Finally, similar to $mathrm{VSi_2P_4}$, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the $mathrm{VSi_2N_4}$ monolayer. Our works show that $mathrm{VSi_2P_4}$ in FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.
Solid solution BiFe1-xCoxO3 shows anti-ferromagnetic order and pyroelectric order, simultaneously. It has been known that BiFe1-xCoxO3 exhibits a structural phase transition between monoclinic and tetragonal phases as x increases. This kinds of trans ition is often called morphotoropic phase boundary, which is well known to take place in a representative piezoelectric oxide, PbZr1-xTixO3. In order to theoretically understand the piezoelectric property in BiFe1-xCoxO3, we performed ab-initio electronic-structure calculations and studied the structural stability, the magnetic property, and the electronic polarization by means of super-cell approach. It turns out that the large electric polarization and the particular pyramidal coordination suppress the response of the electric polarization under strain. A way to enhance the piezoelectric effect in BiFe1-xCoxO3 is proposed.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO$_{2}$) is todays most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this al l-important compound is still lacking. Interestingly, HfO$_2$ has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart form classic ferroelectrics (e.g., perovskite oxides like PbTiO$_3$) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO$_2$ thin films using piezoresponse force microscopy. Further,the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
Experimentally synthesized $mathrm{MoSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020)}) is a piezoelectric semiconductor. Here, we systematically study the large biaxial (isotropic) strain effects (0.90 to 1.10) on electronic str uctures and transport coefficients of monolayer $mathrm{MoSi_2N_4}$ by density functional theory (DFT). With $a/a_0$ from 0.90 to 1.10, the energy band gap firstly increases, and then decreases, which is due to transformation of conduction band minimum (CBM). Calculated results show that the $mathrm{MoSi_2N_4}$ monolayer is mechanically stable in considered strain range. It is found that the spin-orbital coupling (SOC) effects on Seebeck coefficient depend on the strain. In unstrained $mathrm{MoSi_2N_4}$, the SOC has neglected influence on Seebeck coefficient. However, the SOC can produce important influence on Seebeck coefficient, when the strain is applied, for example 0.96 strain. The compressive strain can change relative position and numbers of conduction band extrema (CBE), and then the strength of conduction bands convergence can be enhanced, to the benefit of n-type $ZT_e$. Only about 0.96 strain can effectively improve n-type $ZT_e$. Our works imply that strain can effectively tune the electronic structures and transport coefficients of monolayer $mathrm{MoSi_2N_4}$, and can motivate farther experimental exploration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا