ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable electron-phonon interactions in long-period superlattices

175   0   0.0 ( 0 )
 نشر من قبل Hiroaki Ishizuka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficiency of optical emitters can be dramatically enhanced by reducing the effective mode volume (the Purcell effect). Here we predict an analogous enhancement for electron-phonon (el-ph) scattering, achieved by compressing the electronic Wannier orbitals. Reshaping of Wannier orbitals is a prominent effect in graphene moire superlattices (SLs) where the orbitals are tunable by the twist angle. A reduction of the orbital effective volume leads to an enhancement in the effective el-ph coupling strength, yielding the values considerably bigger than those known for pristine monolayer graphene. The enhanced coupling boosts the el-ph scattering rates, pushing them above the values predicted from the enhanced spectral density of electronic excitations. The enhanced phonon emission and scattering rates are manifest in the observables such as electron-lattice cooling and the linear-$T$ resistivity, both of which are directly tunable by the moire twist angle.



قيم البحث

اقرأ أيضاً

153 - R. C. Monreal , F. Flores , 2010
We present a combined theoretical approach to study the nonequilibrium transport properties of nanoscale systems coupled to metallic electrodes and exhibiting strong electron-phonon interactions. We use the Keldysh Green function formalism to general ize beyond linear theory in the applied voltage an equation of motion method and an interpolative self-energy approximation previously developed in equilibrium. We analyze the specific characteristics of inelastic transport appearing in the intensity versus voltage curves and in the conductance, providing qualitative criteria for the sign of the step-like features in the conductance. Excellent overall agreement between both approaches is found for a wide range of parameters.
The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is curren tly the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor $bf YBa_2 Cu_3 O_7$ and the colossal-magnetoresistance compound $bf La_{2/3}Ca_{1/3}MnO_{3}$ that suggests a new approach to this problem. We find that a rotational mode of the MnO$_6$ octahedra in $bf La_{2/3}Ca_{1/3}MnO_{3}$ experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the $bf YBa_2 Cu_3 O_7$ layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
187 - J.P.Hague 2007
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I fin d a d-wave superconducting state that is unique close to half-filling. The order parameter undergoes a transition to s-wave superconductivity on increasing filling. I explain how the inclusion of both vertex corrections and spatial fluctuations is essential for the prediction of a d-wave order parameter. I then discuss the effects of a large Coulomb pseudopotential on the superconductivity (such as is found in contemporary superconducting materials like the cuprates), which results in the destruction of the s-wave states, while leaving the d-wave states unmodified.
The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a kink at 150+/-15 meV, while the coupling of electrons to another expected phonon E2g at 195 meV can only be barely detected. The possible role of the el-el interaction to account for the enhanced coupling of electrons to the A1g phonon, and the contribution of el-ph interaction to the linear imaginary part of the self energy at high binding energy are also discussed. Our results reveal the dominant role of the A1g phonon in the el-ph interaction in graphene, and highlight the important interplay of el-el and el-ph interactions in the self energy of graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا